FlatBuffers 64 for C++ (#7935)

* First working hack of adding 64-bit. Don't judge :)

* Made vector_downward work on 64 bit types

* vector_downward uses size_t, added offset64 to reflection

* cleaned up adding offset64 in parser

* Add C++ testing skeleton for 64-bit

* working test for CreateVector64

* working >2 GiB buffers

* support for large strings

* simplified CreateString<> to just provide the offset type

* generalize CreateVector template

* update test_64.afb due to upstream format change

* Added Vector64 type, which is just an alias for vector ATM

* Switch to Offset64 for Vector64

* Update for reflection bfbs output change

* Starting to add support for vector64 type in C++

* made a generic CreateVector that can handle different offsets and vector types

* Support for 32-vector with 64-addressing

* Vector64 basic builder + tests working

* basic support for json vector64 support

* renamed fields in test_64bit.fbs to better reflect their use

* working C++ vector64 builder

* Apply --annotate-sparse-vector to 64-bit tests

* Enable Vector64 for --annotate-sparse-vectors

* Merged from upstream

* Add `near_string` field for testing 32-bit offsets alongside

* keep track of where the 32-bit and 64-bit regions are for flatbufferbuilder

* move template<> outside class body for GCC

* update run.sh to build and run tests

* basic assertion for adding 64-bit offset at the wrong time

* started to separate `FlatBufferBuilder` into two classes, 1 64-bit aware, the other not

* add test for nested flatbuffer vector64, fix bug in alignment of big vectors

* fixed CreateDirect method by iterating by Offset64 first

* internal refactoring of flatbufferbuilder

* block not supported languages in the parser from using 64-bit

* evolution tests for adding a vector64 field

* conformity tests for adding/removing offset64 attributes

* ensure test is for a big buffer

* add parser error tests for `offset64` and `vector64` attributes

* add missing static that GCC only complains about

* remove stdint-uintn.h header that gets automatically added

* move 64-bit CalculateOffset internal

* fixed return size of EndVector

* various fixes on windows

* add SizeT to vector_downward

* minimze range of size changes in vector and builder

* reworked how tracking if 64-offsets are added

* Add ReturnT to EndVector

* small cleanups

* remove need for second Array definition

* combine IndirectHelpers into one definition

* started support for vector of struct

* Support for 32/64-vectors of structs + Offset64

* small cleanups

* add verification for vector64

* add sized prefix for 64-bit buffers

* add fuzzer for 64-bit

* add example of adding many vectors using a wrapper table

* run the new -bfbs-gen-embed logic on the 64-bit tests

* remove run.sh and fix cmakelist issue

* fixed bazel rules

* fixed some PR comments

* add 64-bit tests to cmakelist
This commit is contained in:
Derek Bailey 2023-05-09 09:16:30 -07:00 committed by GitHub
parent 13fc75cb6b
commit 63b7b25289
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
49 changed files with 3274 additions and 529 deletions

View File

@ -234,6 +234,8 @@ set(FlatBuffers_Tests_SRCS
tests/native_type_test_impl.cpp
tests/alignment_test.h
tests/alignment_test.cpp
tests/64bit/offset64_test.h
tests/64bit/offset64_test.cpp
include/flatbuffers/code_generators.h
src/code_generators.cpp
)
@ -527,6 +529,9 @@ if(FLATBUFFERS_BUILD_TESTS)
compile_schema_for_test(tests/native_inline_table_test.fbs "${FLATC_OPT_COMP}")
compile_schema_for_test(tests/native_type_test.fbs "${FLATC_OPT}")
compile_schema_for_test(tests/key_field/key_field_sample.fbs "${FLATC_OPT_COMP}")
compile_schema_for_test(tests/64bit/test_64bit.fbs "${FLATC_OPT_COMP};--bfbs-gen-embed")
compile_schema_for_test(tests/64bit/evolution/v1.fbs "${FLATC_OPT_COMP}")
compile_schema_for_test(tests/64bit/evolution/v2.fbs "${FLATC_OPT_COMP}")
if(FLATBUFFERS_CODE_SANITIZE)
add_fsanitize_to_target(flattests ${FLATBUFFERS_CODE_SANITIZE})

View File

@ -17,6 +17,7 @@
#ifndef FLATBUFFERS_ARRAY_H_
#define FLATBUFFERS_ARRAY_H_
#include <cstdint>
#include <memory>
#include "flatbuffers/base.h"
@ -37,7 +38,7 @@ template<typename T, uint16_t length> class Array {
public:
typedef uint16_t size_type;
typedef typename IndirectHelper<IndirectHelperType>::return_type return_type;
typedef VectorConstIterator<T, return_type> const_iterator;
typedef VectorConstIterator<T, return_type, uoffset_t> const_iterator;
typedef VectorReverseIterator<const_iterator> const_reverse_iterator;
// If T is a LE-scalar or a struct (!scalar_tag::value).
@ -158,11 +159,13 @@ template<typename T, uint16_t length> class Array {
// Specialization for Array[struct] with access using Offset<void> pointer.
// This specialization used by idl_gen_text.cpp.
template<typename T, uint16_t length> class Array<Offset<T>, length> {
template<typename T, uint16_t length, template<typename> class OffsetT>
class Array<OffsetT<T>, length> {
static_assert(flatbuffers::is_same<T, void>::value, "unexpected type T");
public:
typedef const void *return_type;
typedef uint16_t size_type;
const uint8_t *Data() const { return data_; }

View File

@ -43,6 +43,7 @@
#include <vector>
#include <set>
#include <algorithm>
#include <limits>
#include <iterator>
#include <memory>
@ -323,9 +324,11 @@ namespace flatbuffers {
// Also, using a consistent offset type maintains compatibility of serialized
// offset values between 32bit and 64bit systems.
typedef uint32_t uoffset_t;
typedef uint64_t uoffset64_t;
// Signed offsets for references that can go in both directions.
typedef int32_t soffset_t;
typedef int64_t soffset64_t;
// Offset/index used in v-tables, can be changed to uint8_t in
// format forks to save a bit of space if desired.
@ -334,7 +337,8 @@ typedef uint16_t voffset_t;
typedef uintmax_t largest_scalar_t;
// In 32bits, this evaluates to 2GB - 1
#define FLATBUFFERS_MAX_BUFFER_SIZE ((1ULL << (sizeof(::flatbuffers::soffset_t) * 8 - 1)) - 1)
#define FLATBUFFERS_MAX_BUFFER_SIZE std::numeric_limits<::flatbuffers::soffset_t>::max()
#define FLATBUFFERS_MAX_64_BUFFER_SIZE std::numeric_limits<::flatbuffers::soffset64_t>::max()
// The minimum size buffer that can be a valid flatbuffer.
// Includes the offset to the root table (uoffset_t), the offset to the vtable

View File

@ -25,14 +25,33 @@ namespace flatbuffers {
// Wrapper for uoffset_t to allow safe template specialization.
// Value is allowed to be 0 to indicate a null object (see e.g. AddOffset).
template<typename T> struct Offset {
uoffset_t o;
template<typename T = void> struct Offset {
// The type of offset to use.
typedef uoffset_t offset_type;
offset_type o;
Offset() : o(0) {}
Offset(uoffset_t _o) : o(_o) {}
Offset<void> Union() const { return Offset<void>(o); }
Offset(const offset_type _o) : o(_o) {}
Offset<> Union() const { return o; }
bool IsNull() const { return !o; }
};
// Wrapper for uoffset64_t Offsets.
template<typename T = void> struct Offset64 {
// The type of offset to use.
typedef uoffset64_t offset_type;
offset_type o;
Offset64() : o(0) {}
Offset64(const offset_type offset) : o(offset) {}
Offset64<> Union() const { return o; }
bool IsNull() const { return !o; }
};
// Litmus check for ensuring the Offsets are the expected size.
static_assert(sizeof(Offset<>) == 4, "Offset has wrong size");
static_assert(sizeof(Offset64<>) == 8, "Offset64 has wrong size");
inline void EndianCheck() {
int endiantest = 1;
// If this fails, see FLATBUFFERS_LITTLEENDIAN above.
@ -75,35 +94,59 @@ template<typename T> struct IndirectHelper {
typedef T return_type;
typedef T mutable_return_type;
static const size_t element_stride = sizeof(T);
static return_type Read(const uint8_t *p, uoffset_t i) {
static return_type Read(const uint8_t *p, const size_t i) {
return EndianScalar((reinterpret_cast<const T *>(p))[i]);
}
static return_type Read(uint8_t *p, uoffset_t i) {
return Read(const_cast<const uint8_t *>(p), i);
static mutable_return_type Read(uint8_t *p, const size_t i) {
return reinterpret_cast<mutable_return_type>(
Read(const_cast<const uint8_t *>(p), i));
}
};
template<typename T> struct IndirectHelper<Offset<T>> {
// For vector of Offsets.
template<typename T, template<typename> class OffsetT>
struct IndirectHelper<OffsetT<T>> {
typedef const T *return_type;
typedef T *mutable_return_type;
static const size_t element_stride = sizeof(uoffset_t);
static return_type Read(const uint8_t *p, uoffset_t i) {
p += i * sizeof(uoffset_t);
return reinterpret_cast<return_type>(p + ReadScalar<uoffset_t>(p));
typedef typename OffsetT<T>::offset_type offset_type;
static const offset_type element_stride = sizeof(offset_type);
static return_type Read(const uint8_t *const p, const offset_type i) {
// Offsets are relative to themselves, so first update the pointer to
// point to the offset location.
const uint8_t *const offset_location = p + i * element_stride;
// Then read the scalar value of the offset (which may be 32 or 64-bits) and
// then determine the relative location from the offset location.
return reinterpret_cast<return_type>(
offset_location + ReadScalar<offset_type>(offset_location));
}
static mutable_return_type Read(uint8_t *p, uoffset_t i) {
p += i * sizeof(uoffset_t);
return reinterpret_cast<mutable_return_type>(p + ReadScalar<uoffset_t>(p));
static mutable_return_type Read(uint8_t *const p, const offset_type i) {
// Offsets are relative to themselves, so first update the pointer to
// point to the offset location.
uint8_t *const offset_location = p + i * element_stride;
// Then read the scalar value of the offset (which may be 32 or 64-bits) and
// then determine the relative location from the offset location.
return reinterpret_cast<mutable_return_type>(
offset_location + ReadScalar<offset_type>(offset_location));
}
};
// For vector of structs.
template<typename T> struct IndirectHelper<const T *> {
typedef const T *return_type;
typedef T *mutable_return_type;
static const size_t element_stride = sizeof(T);
static return_type Read(const uint8_t *p, uoffset_t i) {
return reinterpret_cast<return_type>(p + i * sizeof(T));
static return_type Read(const uint8_t *const p, const size_t i) {
// Structs are stored inline, relative to the first struct pointer.
return reinterpret_cast<return_type>(p + i * element_stride);
}
static mutable_return_type Read(uint8_t *p, uoffset_t i) {
return reinterpret_cast<mutable_return_type>(p + i * sizeof(T));
static mutable_return_type Read(uint8_t *const p, const size_t i) {
// Structs are stored inline, relative to the first struct pointer.
return reinterpret_cast<mutable_return_type>(p + i * element_stride);
}
};
@ -130,23 +173,25 @@ inline bool BufferHasIdentifier(const void *buf, const char *identifier,
/// @cond FLATBUFFERS_INTERNAL
// Helpers to get a typed pointer to the root object contained in the buffer.
template<typename T> T *GetMutableRoot(void *buf) {
if (!buf) return nullptr;
EndianCheck();
return reinterpret_cast<T *>(
reinterpret_cast<uint8_t *>(buf) +
EndianScalar(*reinterpret_cast<uoffset_t *>(buf)));
}
template<typename T> T *GetMutableSizePrefixedRoot(void *buf) {
return GetMutableRoot<T>(reinterpret_cast<uint8_t *>(buf) +
sizeof(uoffset_t));
template<typename T, typename SizeT = uoffset_t>
T *GetMutableSizePrefixedRoot(void *buf) {
return GetMutableRoot<T>(reinterpret_cast<uint8_t *>(buf) + sizeof(SizeT));
}
template<typename T> const T *GetRoot(const void *buf) {
return GetMutableRoot<T>(const_cast<void *>(buf));
}
template<typename T> const T *GetSizePrefixedRoot(const void *buf) {
return GetRoot<T>(reinterpret_cast<const uint8_t *>(buf) + sizeof(uoffset_t));
template<typename T, typename SizeT = uoffset_t>
const T *GetSizePrefixedRoot(const void *buf) {
return GetRoot<T>(reinterpret_cast<const uint8_t *>(buf) + sizeof(SizeT));
}
} // namespace flatbuffers

View File

@ -18,12 +18,15 @@
#define FLATBUFFERS_FLATBUFFER_BUILDER_H_
#include <algorithm>
#include <cstdint>
#include <functional>
#include <initializer_list>
#include <type_traits>
#include "flatbuffers/allocator.h"
#include "flatbuffers/array.h"
#include "flatbuffers/base.h"
#include "flatbuffers/buffer.h"
#include "flatbuffers/buffer_ref.h"
#include "flatbuffers/default_allocator.h"
#include "flatbuffers/detached_buffer.h"
@ -40,8 +43,9 @@ namespace flatbuffers {
// Converts a Field ID to a virtual table offset.
inline voffset_t FieldIndexToOffset(voffset_t field_id) {
// Should correspond to what EndTable() below builds up.
const voffset_t fixed_fields = 2 * sizeof(voffset_t); // Vtable size and Object Size.
return fixed_fields + field_id * sizeof(voffset_t);
const voffset_t fixed_fields =
2 * sizeof(voffset_t); // Vtable size and Object Size.
return fixed_fields + field_id * sizeof(voffset_t);
}
template<typename T, typename Alloc = std::allocator<T>>
@ -68,8 +72,13 @@ T *data(std::vector<T, Alloc> &v) {
/// `PushElement`/`AddElement`/`EndTable`, or the builtin `CreateString`/
/// `CreateVector` functions. Do this is depth-first order to build up a tree to
/// the root. `Finish()` wraps up the buffer ready for transport.
class FlatBufferBuilder {
template<bool Is64Aware = false> class FlatBufferBuilderImpl {
public:
// This switches the size type of the builder, based on if its 64-bit aware
// (uoffset64_t) or not (uoffset_t).
typedef
typename std::conditional<Is64Aware, uoffset64_t, uoffset_t>::type SizeT;
/// @brief Default constructor for FlatBufferBuilder.
/// @param[in] initial_size The initial size of the buffer, in bytes. Defaults
/// to `1024`.
@ -81,13 +90,16 @@ class FlatBufferBuilder {
/// minimum alignment upon reallocation. Only needed if you intend to store
/// types with custom alignment AND you wish to read the buffer in-place
/// directly after creation.
explicit FlatBufferBuilder(
explicit FlatBufferBuilderImpl(
size_t initial_size = 1024, Allocator *allocator = nullptr,
bool own_allocator = false,
size_t buffer_minalign = AlignOf<largest_scalar_t>())
: buf_(initial_size, allocator, own_allocator, buffer_minalign),
: buf_(initial_size, allocator, own_allocator, buffer_minalign,
static_cast<SizeT>(Is64Aware ? FLATBUFFERS_MAX_64_BUFFER_SIZE
: FLATBUFFERS_MAX_BUFFER_SIZE)),
num_field_loc(0),
max_voffset_(0),
length_of_64_bit_region_(0),
nested(false),
finished(false),
minalign_(1),
@ -98,10 +110,13 @@ class FlatBufferBuilder {
}
/// @brief Move constructor for FlatBufferBuilder.
FlatBufferBuilder(FlatBufferBuilder &&other) noexcept
: buf_(1024, nullptr, false, AlignOf<largest_scalar_t>()),
FlatBufferBuilderImpl(FlatBufferBuilderImpl &&other) noexcept
: buf_(1024, nullptr, false, AlignOf<largest_scalar_t>(),
static_cast<SizeT>(Is64Aware ? FLATBUFFERS_MAX_64_BUFFER_SIZE
: FLATBUFFERS_MAX_BUFFER_SIZE)),
num_field_loc(0),
max_voffset_(0),
length_of_64_bit_region_(0),
nested(false),
finished(false),
minalign_(1),
@ -116,18 +131,19 @@ class FlatBufferBuilder {
}
/// @brief Move assignment operator for FlatBufferBuilder.
FlatBufferBuilder &operator=(FlatBufferBuilder &&other) noexcept {
FlatBufferBuilderImpl &operator=(FlatBufferBuilderImpl &&other) noexcept {
// Move construct a temporary and swap idiom
FlatBufferBuilder temp(std::move(other));
FlatBufferBuilderImpl temp(std::move(other));
Swap(temp);
return *this;
}
void Swap(FlatBufferBuilder &other) {
void Swap(FlatBufferBuilderImpl &other) {
using std::swap;
buf_.swap(other.buf_);
swap(num_field_loc, other.num_field_loc);
swap(max_voffset_, other.max_voffset_);
swap(length_of_64_bit_region_, other.length_of_64_bit_region_);
swap(nested, other.nested);
swap(finished, other.finished);
swap(minalign_, other.minalign_);
@ -136,7 +152,7 @@ class FlatBufferBuilder {
swap(string_pool, other.string_pool);
}
~FlatBufferBuilder() {
~FlatBufferBuilderImpl() {
if (string_pool) delete string_pool;
}
@ -153,12 +169,36 @@ class FlatBufferBuilder {
nested = false;
finished = false;
minalign_ = 1;
length_of_64_bit_region_ = 0;
if (string_pool) string_pool->clear();
}
/// @brief The current size of the serialized buffer, counting from the end.
/// @return Returns an `SizeT` with the current size of the buffer.
SizeT GetSize() const { return buf_.size(); }
/// @brief The current size of the serialized buffer relative to the end of
/// the 32-bit region.
/// @return Returns an `uoffset_t` with the current size of the buffer.
uoffset_t GetSize() const { return buf_.size(); }
template<bool is_64 = Is64Aware>
// Only enable this method for the 64-bit builder, as only that builder is
// concerned with the 32/64-bit boundary, and should be the one to bare any
// run time costs.
typename std::enable_if<is_64, uoffset_t>::type GetSizeRelative32BitRegion()
const {
//[32-bit region][64-bit region]
// [XXXXXXXXXXXXXXXXXXX] GetSize()
// [YYYYYYYYYYYYY] length_of_64_bit_region_
// [ZZZZ] return size
return static_cast<uoffset_t>(GetSize() - length_of_64_bit_region_);
}
template<bool is_64 = Is64Aware>
// Only enable this method for the 32-bit builder.
typename std::enable_if<!is_64, uoffset_t>::type GetSizeRelative32BitRegion()
const {
return static_cast<uoffset_t>(GetSize());
}
/// @brief Get the serialized buffer (after you call `Finish()`).
/// @return Returns an `uint8_t` pointer to the FlatBuffer data inside the
@ -270,14 +310,16 @@ class FlatBufferBuilder {
}
// Write a single aligned scalar to the buffer
template<typename T> uoffset_t PushElement(T element) {
template<typename T, typename ReturnT = uoffset_t>
ReturnT PushElement(T element) {
AssertScalarT<T>();
Align(sizeof(T));
buf_.push_small(EndianScalar(element));
return GetSize();
return CalculateOffset<ReturnT>();
}
template<typename T> uoffset_t PushElement(Offset<T> off) {
template<typename T, template<typename> class OffsetT = Offset>
uoffset_t PushElement(OffsetT<T> off) {
// Special case for offsets: see ReferTo below.
return PushElement(ReferTo(off.o));
}
@ -307,11 +349,16 @@ class FlatBufferBuilder {
AddElement(field, ReferTo(off.o), static_cast<uoffset_t>(0));
}
template<typename T> void AddOffset(voffset_t field, Offset64<T> off) {
if (off.IsNull()) return; // Don't store.
AddElement(field, ReferTo(off.o), static_cast<uoffset64_t>(0));
}
template<typename T> void AddStruct(voffset_t field, const T *structptr) {
if (!structptr) return; // Default, don't store.
Align(AlignOf<T>());
buf_.push_small(*structptr);
TrackField(field, GetSize());
TrackField(field, CalculateOffset<uoffset_t>());
}
void AddStructOffset(voffset_t field, uoffset_t off) {
@ -322,12 +369,29 @@ class FlatBufferBuilder {
// This function converts them to be relative to the current location
// in the buffer (when stored here), pointing upwards.
uoffset_t ReferTo(uoffset_t off) {
// Align to ensure GetSize() below is correct.
// Align to ensure GetSizeRelative32BitRegion() below is correct.
Align(sizeof(uoffset_t));
// Offset must refer to something already in buffer.
const uoffset_t size = GetSize();
// 32-bit offsets are relative to the tail of the 32-bit region of the
// buffer. For most cases (without 64-bit entities) this is equivalent to
// size of the whole buffer (e.g. GetSize())
return ReferTo(off, GetSizeRelative32BitRegion());
}
uoffset64_t ReferTo(uoffset64_t off) {
// Align to ensure GetSize() below is correct.
Align(sizeof(uoffset64_t));
// 64-bit offsets are relative to tail of the whole buffer
return ReferTo(off, GetSize());
}
template<typename T, typename T2> T ReferTo(const T off, const T2 size) {
FLATBUFFERS_ASSERT(off && off <= size);
return size - off + static_cast<uoffset_t>(sizeof(uoffset_t));
return size - off + static_cast<T>(sizeof(T));
}
template<typename T> T ReferTo(const T off, const T size) {
FLATBUFFERS_ASSERT(off && off <= size);
return size - off + static_cast<T>(sizeof(T));
}
void NotNested() {
@ -349,7 +413,7 @@ class FlatBufferBuilder {
uoffset_t StartTable() {
NotNested();
nested = true;
return GetSize();
return GetSizeRelative32BitRegion();
}
// This finishes one serialized object by generating the vtable if it's a
@ -360,7 +424,9 @@ class FlatBufferBuilder {
FLATBUFFERS_ASSERT(nested);
// Write the vtable offset, which is the start of any Table.
// We fill its value later.
const uoffset_t vtableoffsetloc = PushElement<soffset_t>(0);
// This is relative to the end of the 32-bit region.
const uoffset_t vtable_offset_loc =
static_cast<uoffset_t>(PushElement<soffset_t>(0));
// Write a vtable, which consists entirely of voffset_t elements.
// It starts with the number of offsets, followed by a type id, followed
// by the offsets themselves. In reverse:
@ -370,7 +436,7 @@ class FlatBufferBuilder {
(std::max)(static_cast<voffset_t>(max_voffset_ + sizeof(voffset_t)),
FieldIndexToOffset(0));
buf_.fill_big(max_voffset_);
auto table_object_size = vtableoffsetloc - start;
const uoffset_t table_object_size = vtable_offset_loc - start;
// Vtable use 16bit offsets.
FLATBUFFERS_ASSERT(table_object_size < 0x10000);
WriteScalar<voffset_t>(buf_.data() + sizeof(voffset_t),
@ -380,7 +446,8 @@ class FlatBufferBuilder {
for (auto it = buf_.scratch_end() - num_field_loc * sizeof(FieldLoc);
it < buf_.scratch_end(); it += sizeof(FieldLoc)) {
auto field_location = reinterpret_cast<FieldLoc *>(it);
auto pos = static_cast<voffset_t>(vtableoffsetloc - field_location->off);
const voffset_t pos =
static_cast<voffset_t>(vtable_offset_loc - field_location->off);
// If this asserts, it means you've set a field twice.
FLATBUFFERS_ASSERT(
!ReadScalar<voffset_t>(buf_.data() + field_location->id));
@ -389,7 +456,7 @@ class FlatBufferBuilder {
ClearOffsets();
auto vt1 = reinterpret_cast<voffset_t *>(buf_.data());
auto vt1_size = ReadScalar<voffset_t>(vt1);
auto vt_use = GetSize();
auto vt_use = GetSizeRelative32BitRegion();
// See if we already have generated a vtable with this exact same
// layout before. If so, make it point to the old one, remove this one.
if (dedup_vtables_) {
@ -400,23 +467,24 @@ class FlatBufferBuilder {
auto vt2_size = ReadScalar<voffset_t>(vt2);
if (vt1_size != vt2_size || 0 != memcmp(vt2, vt1, vt1_size)) continue;
vt_use = *vt_offset_ptr;
buf_.pop(GetSize() - static_cast<size_t>(vtableoffsetloc));
buf_.pop(GetSizeRelative32BitRegion() - vtable_offset_loc);
break;
}
}
// If this is a new vtable, remember it.
if (vt_use == GetSize()) { buf_.scratch_push_small(vt_use); }
if (vt_use == GetSizeRelative32BitRegion()) {
buf_.scratch_push_small(vt_use);
}
// Fill the vtable offset we created above.
// The offset points from the beginning of the object to where the
// vtable is stored.
// The offset points from the beginning of the object to where the vtable is
// stored.
// Offsets default direction is downward in memory for future format
// flexibility (storing all vtables at the start of the file).
WriteScalar(buf_.data_at(vtableoffsetloc),
WriteScalar(buf_.data_at(vtable_offset_loc + length_of_64_bit_region_),
static_cast<soffset_t>(vt_use) -
static_cast<soffset_t>(vtableoffsetloc));
static_cast<soffset_t>(vtable_offset_loc));
nested = false;
return vtableoffsetloc;
return vtable_offset_loc;
}
FLATBUFFERS_ATTRIBUTE([[deprecated("call the version above instead")]])
@ -426,14 +494,20 @@ class FlatBufferBuilder {
// This checks a required field has been set in a given table that has
// just been constructed.
template<typename T> void Required(Offset<T> table, voffset_t field);
template<typename T> void Required(Offset<T> table, voffset_t field) {
auto table_ptr = reinterpret_cast<const Table *>(buf_.data_at(table.o));
bool ok = table_ptr->GetOptionalFieldOffset(field) != 0;
// If this fails, the caller will show what field needs to be set.
FLATBUFFERS_ASSERT(ok);
(void)ok;
}
uoffset_t StartStruct(size_t alignment) {
Align(alignment);
return GetSize();
return GetSizeRelative32BitRegion();
}
uoffset_t EndStruct() { return GetSize(); }
uoffset_t EndStruct() { return GetSizeRelative32BitRegion(); }
void ClearOffsets() {
buf_.scratch_pop(num_field_loc * sizeof(FieldLoc));
@ -442,15 +516,18 @@ class FlatBufferBuilder {
}
// Aligns such that when "len" bytes are written, an object can be written
// after it with "alignment" without padding.
// after it (forward in the buffer) with "alignment" without padding.
void PreAlign(size_t len, size_t alignment) {
if (len == 0) return;
TrackMinAlign(alignment);
buf_.fill(PaddingBytes(GetSize() + len, alignment));
}
template<typename T> void PreAlign(size_t len) {
AssertScalarT<T>();
PreAlign(len, AlignOf<T>());
// Aligns such than when "len" bytes are written, an object of type `AlignT`
// can be written after it (forward in the buffer) without padding.
template<typename AlignT> void PreAlign(size_t len) {
AssertScalarT<AlignT>();
PreAlign(len, AlignOf<AlignT>());
}
/// @endcond
@ -458,34 +535,35 @@ class FlatBufferBuilder {
/// @param[in] str A const char pointer to the data to be stored as a string.
/// @param[in] len The number of bytes that should be stored from `str`.
/// @return Returns the offset in the buffer where the string starts.
Offset<String> CreateString(const char *str, size_t len) {
NotNested();
PreAlign<uoffset_t>(len + 1); // Always 0-terminated.
buf_.fill(1);
PushBytes(reinterpret_cast<const uint8_t *>(str), len);
PushElement(static_cast<uoffset_t>(len));
return Offset<String>(GetSize());
template<template<typename> class OffsetT = Offset>
OffsetT<String> CreateString(const char *str, size_t len) {
CreateStringImpl(str, len);
return OffsetT<String>(
CalculateOffset<typename OffsetT<String>::offset_type>());
}
/// @brief Store a string in the buffer, which is null-terminated.
/// @param[in] str A const char pointer to a C-string to add to the buffer.
/// @return Returns the offset in the buffer where the string starts.
Offset<String> CreateString(const char *str) {
return CreateString(str, strlen(str));
template<template<typename> class OffsetT = Offset>
OffsetT<String> CreateString(const char *str) {
return CreateString<OffsetT>(str, strlen(str));
}
/// @brief Store a string in the buffer, which is null-terminated.
/// @param[in] str A char pointer to a C-string to add to the buffer.
/// @return Returns the offset in the buffer where the string starts.
Offset<String> CreateString(char *str) {
return CreateString(str, strlen(str));
template<template<typename> class OffsetT = Offset>
OffsetT<String> CreateString(char *str) {
return CreateString<OffsetT>(str, strlen(str));
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const reference to a std::string to store in the buffer.
/// @return Returns the offset in the buffer where the string starts.
Offset<String> CreateString(const std::string &str) {
return CreateString(str.c_str(), str.length());
template<template<typename> class OffsetT = Offset>
OffsetT<String> CreateString(const std::string &str) {
return CreateString<OffsetT>(str.c_str(), str.length());
}
// clang-format off
@ -493,8 +571,9 @@ class FlatBufferBuilder {
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const string_view to copy in to the buffer.
/// @return Returns the offset in the buffer where the string starts.
Offset<String> CreateString(flatbuffers::string_view str) {
return CreateString(str.data(), str.size());
template<template <typename> class OffsetT = Offset>
OffsetT<String>CreateString(flatbuffers::string_view str) {
return CreateString<OffsetT>(str.data(), str.size());
}
#endif // FLATBUFFERS_HAS_STRING_VIEW
// clang-format on
@ -502,16 +581,21 @@ class FlatBufferBuilder {
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const pointer to a `String` struct to add to the buffer.
/// @return Returns the offset in the buffer where the string starts
Offset<String> CreateString(const String *str) {
return str ? CreateString(str->c_str(), str->size()) : 0;
template<template<typename> class OffsetT = Offset>
OffsetT<String> CreateString(const String *str) {
return str ? CreateString<OffsetT>(str->c_str(), str->size()) : 0;
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const reference to a std::string like type with support
/// of T::c_str() and T::length() to store in the buffer.
/// @return Returns the offset in the buffer where the string starts.
template<typename T> Offset<String> CreateString(const T &str) {
return CreateString(str.c_str(), str.length());
template<template<typename> class OffsetT = Offset,
// No need to explicitly declare the T type, let the compiler deduce
// it.
int &...ExplicitArgumentBarrier, typename T>
OffsetT<String> CreateString(const T &str) {
return CreateString<OffsetT>(str.c_str(), str.length());
}
/// @brief Store a string in the buffer, which can contain any binary data.
@ -523,12 +607,14 @@ class FlatBufferBuilder {
/// @return Returns the offset in the buffer where the string starts.
Offset<String> CreateSharedString(const char *str, size_t len) {
FLATBUFFERS_ASSERT(FLATBUFFERS_GENERAL_HEAP_ALLOC_OK);
if (!string_pool)
if (!string_pool) {
string_pool = new StringOffsetMap(StringOffsetCompare(buf_));
}
const size_t size_before_string = buf_.size();
// Must first serialize the string, since the set is all offsets into
// buffer.
auto off = CreateString(str, len);
const Offset<String> off = CreateString<Offset>(str, len);
auto it = string_pool->find(off);
// If it exists we reuse existing serialized data!
if (it != string_pool->end()) {
@ -584,21 +670,27 @@ class FlatBufferBuilder {
}
/// @cond FLATBUFFERS_INTERNAL
uoffset_t EndVector(size_t len) {
template<typename LenT = uoffset_t, typename ReturnT = uoffset_t>
ReturnT EndVector(size_t len) {
FLATBUFFERS_ASSERT(nested); // Hit if no corresponding StartVector.
nested = false;
return PushElement(static_cast<uoffset_t>(len));
return PushElement<LenT, ReturnT>(static_cast<LenT>(len));
}
template<template<typename> class OffsetT = Offset, typename LenT = uint32_t>
void StartVector(size_t len, size_t elemsize, size_t alignment) {
NotNested();
nested = true;
PreAlign<uoffset_t>(len * elemsize);
// Align to the Length type of the vector (either 32-bit or 64-bit), so
// that the length of the buffer can be added without padding.
PreAlign<LenT>(len * elemsize);
PreAlign(len * elemsize, alignment); // Just in case elemsize > uoffset_t.
}
template<typename T> void StartVector(size_t len) {
return StartVector(len, sizeof(T), AlignOf<T>());
template<typename T, template<typename> class OffsetT = Offset,
typename LenT = uint32_t>
void StartVector(size_t len) {
return StartVector<OffsetT, LenT>(len, sizeof(T), AlignOf<T>());
}
// Call this right before StartVector/CreateVector if you want to force the
@ -623,31 +715,40 @@ class FlatBufferBuilder {
/// @brief Serialize an array into a FlatBuffer `vector`.
/// @tparam T The data type of the array elements.
/// @tparam OffsetT the type of offset to return
/// @tparam VectorT the type of vector to cast to.
/// @param[in] v A pointer to the array of type `T` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `Offset` into the serialized data indicating
/// @return Returns a typed `TOffset` into the serialized data indicating
/// where the vector is stored.
template<typename T> Offset<Vector<T>> CreateVector(const T *v, size_t len) {
template<template<typename...> class OffsetT = Offset,
template<typename...> class VectorT = Vector,
int &...ExplicitArgumentBarrier, typename T>
OffsetT<VectorT<T>> CreateVector(const T *v, size_t len) {
// The type of the length field in the vector.
typedef typename VectorT<T>::size_type LenT;
typedef typename OffsetT<VectorT<T>>::offset_type offset_type;
// If this assert hits, you're specifying a template argument that is
// causing the wrong overload to be selected, remove it.
AssertScalarT<T>();
StartVector<T>(len);
if (len == 0) { return Offset<Vector<T>>(EndVector(len)); }
// clang-format off
#if FLATBUFFERS_LITTLEENDIAN
PushBytes(reinterpret_cast<const uint8_t *>(v), len * sizeof(T));
#else
if (sizeof(T) == 1) {
PushBytes(reinterpret_cast<const uint8_t *>(v), len);
} else {
for (auto i = len; i > 0; ) {
PushElement(v[--i]);
StartVector<T, OffsetT, LenT>(len);
if (len > 0) {
// clang-format off
#if FLATBUFFERS_LITTLEENDIAN
PushBytes(reinterpret_cast<const uint8_t *>(v), len * sizeof(T));
#else
if (sizeof(T) == 1) {
PushBytes(reinterpret_cast<const uint8_t *>(v), len);
} else {
for (auto i = len; i > 0; ) {
PushElement(v[--i]);
}
}
}
#endif
// clang-format on
return Offset<Vector<T>>(EndVector(len));
#endif
// clang-format on
}
return OffsetT<VectorT<T>>(EndVector<LenT, offset_type>(len));
}
/// @brief Serialize an array like object into a FlatBuffer `vector`.
@ -689,6 +790,12 @@ class FlatBufferBuilder {
return CreateVector(data(v), v.size());
}
template<template<typename...> class VectorT = Vector64,
int &...ExplicitArgumentBarrier, typename T>
Offset64<VectorT<T>> CreateVector64(const std::vector<T> &v) {
return CreateVector<Offset64, VectorT>(data(v), v.size());
}
// vector<bool> may be implemented using a bit-set, so we can't access it as
// an array. Instead, read elements manually.
// Background: https://isocpp.org/blog/2012/11/on-vectorbool
@ -785,47 +892,19 @@ class FlatBufferBuilder {
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T>
Offset<Vector<const T *>> CreateVectorOfStructs(const T *v, size_t len) {
StartVector(len * sizeof(T) / AlignOf<T>(), sizeof(T), AlignOf<T>());
template<typename T, template<typename...> class OffsetT = Offset,
template<typename...> class VectorT = Vector>
OffsetT<VectorT<const T *>> CreateVectorOfStructs(const T *v, size_t len) {
// The type of the length field in the vector.
typedef typename VectorT<T>::size_type LenT;
typedef typename OffsetT<VectorT<const T *>>::offset_type offset_type;
StartVector<OffsetT, LenT>(len * sizeof(T) / AlignOf<T>(), sizeof(T),
AlignOf<T>());
if (len > 0) {
PushBytes(reinterpret_cast<const uint8_t *>(v), sizeof(T) * len);
}
return Offset<Vector<const T *>>(EndVector(len));
}
/// @brief Serialize an array of native structs into a FlatBuffer `vector`.
/// @tparam T The data type of the struct array elements.
/// @tparam S The data type of the native struct array elements.
/// @param[in] v A pointer to the array of type `S` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @param[in] pack_func Pointer to a function to convert the native struct
/// to the FlatBuffer struct.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S>
Offset<Vector<const T *>> CreateVectorOfNativeStructs(
const S *v, size_t len, T (*const pack_func)(const S &)) {
FLATBUFFERS_ASSERT(pack_func);
auto structs = StartVectorOfStructs<T>(len);
for (size_t i = 0; i < len; i++) { structs[i] = pack_func(v[i]); }
return EndVectorOfStructs<T>(len);
}
/// @brief Serialize an array of native structs into a FlatBuffer `vector`.
/// @tparam T The data type of the struct array elements.
/// @tparam S The data type of the native struct array elements.
/// @param[in] v A pointer to the array of type `S` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S>
Offset<Vector<const T *>> CreateVectorOfNativeStructs(const S *v,
size_t len) {
extern T Pack(const S &);
return CreateVectorOfNativeStructs(v, len, Pack);
return OffsetT<VectorT<const T *>>(EndVector<LenT, offset_type>(len));
}
/// @brief Serialize an array of structs into a FlatBuffer `vector`.
@ -873,10 +952,52 @@ class FlatBufferBuilder {
/// serialize into the buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename Alloc = std::allocator<T>>
Offset<Vector<const T *>> CreateVectorOfStructs(
template<typename T, template<typename...> class OffsetT = Offset,
template<typename...> class VectorT = Vector,
typename Alloc = std::allocator<T>>
OffsetT<VectorT<const T *>> CreateVectorOfStructs(
const std::vector<T, Alloc> &v) {
return CreateVectorOfStructs(data(v), v.size());
return CreateVectorOfStructs<T, OffsetT, VectorT>(data(v), v.size());
}
template<template<typename...> class VectorT = Vector64, int &..., typename T>
Offset64<VectorT<const T *>> CreateVectorOfStructs64(
const std::vector<T> &v) {
return CreateVectorOfStructs<T, Offset64, VectorT>(data(v), v.size());
}
/// @brief Serialize an array of native structs into a FlatBuffer `vector`.
/// @tparam T The data type of the struct array elements.
/// @tparam S The data type of the native struct array elements.
/// @param[in] v A pointer to the array of type `S` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @param[in] pack_func Pointer to a function to convert the native struct
/// to the FlatBuffer struct.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S>
Offset<Vector<const T *>> CreateVectorOfNativeStructs(
const S *v, size_t len, T (*const pack_func)(const S &)) {
FLATBUFFERS_ASSERT(pack_func);
auto structs = StartVectorOfStructs<T>(len);
for (size_t i = 0; i < len; i++) { structs[i] = pack_func(v[i]); }
return EndVectorOfStructs<T>(len);
}
/// @brief Serialize an array of native structs into a FlatBuffer `vector`.
/// @tparam T The data type of the struct array elements.
/// @tparam S The data type of the native struct array elements.
/// @param[in] v A pointer to the array of type `S` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S>
Offset<Vector<const T *>> CreateVectorOfNativeStructs(const S *v,
size_t len) {
extern T Pack(const S &);
return CreateVectorOfNativeStructs(v, len, Pack);
}
/// @brief Serialize a `std::vector` of native structs into a FlatBuffer
@ -979,14 +1100,14 @@ class FlatBufferBuilder {
/// @cond FLATBUFFERS_INTERNAL
template<typename T> struct TableKeyComparator {
TableKeyComparator(vector_downward &buf) : buf_(buf) {}
explicit TableKeyComparator(vector_downward<SizeT> &buf) : buf_(buf) {}
TableKeyComparator(const TableKeyComparator &other) : buf_(other.buf_) {}
bool operator()(const Offset<T> &a, const Offset<T> &b) const {
auto table_a = reinterpret_cast<T *>(buf_.data_at(a.o));
auto table_b = reinterpret_cast<T *>(buf_.data_at(b.o));
return table_a->KeyCompareLessThan(table_b);
}
vector_downward &buf_;
vector_downward<SizeT> &buf_;
private:
FLATBUFFERS_DELETE_FUNC(
@ -1034,7 +1155,7 @@ class FlatBufferBuilder {
NotNested();
StartVector(len, elemsize, alignment);
buf_.make_space(len * elemsize);
auto vec_start = GetSize();
const uoffset_t vec_start = GetSizeRelative32BitRegion();
auto vec_end = EndVector(len);
*buf = buf_.data_at(vec_start);
return vec_end;
@ -1085,7 +1206,8 @@ class FlatBufferBuilder {
NotNested();
Align(AlignOf<T>());
buf_.push_small(structobj);
return Offset<const T *>(GetSize());
return Offset<const T *>(
CalculateOffset<typename Offset<const T *>::offset_type>());
}
/// @brief Finish serializing a buffer by writing the root offset.
@ -1109,7 +1231,7 @@ class FlatBufferBuilder {
Finish(root.o, file_identifier, true);
}
void SwapBufAllocator(FlatBufferBuilder &other) {
void SwapBufAllocator(FlatBufferBuilderImpl &other) {
buf_.swap_allocator(other.buf_);
}
@ -1119,16 +1241,23 @@ class FlatBufferBuilder {
protected:
// You shouldn't really be copying instances of this class.
FlatBufferBuilder(const FlatBufferBuilder &);
FlatBufferBuilder &operator=(const FlatBufferBuilder &);
FlatBufferBuilderImpl(const FlatBufferBuilderImpl &);
FlatBufferBuilderImpl &operator=(const FlatBufferBuilderImpl &);
void Finish(uoffset_t root, const char *file_identifier, bool size_prefix) {
NotNested();
buf_.clear_scratch();
const size_t prefix_size = size_prefix ? sizeof(SizeT) : 0;
// Make sure we track the alignment of the size prefix.
TrackMinAlign(prefix_size);
const size_t root_offset_size = sizeof(uoffset_t);
const size_t file_id_size = file_identifier ? kFileIdentifierLength : 0;
// This will cause the whole buffer to be aligned.
PreAlign((size_prefix ? sizeof(uoffset_t) : 0) + sizeof(uoffset_t) +
(file_identifier ? kFileIdentifierLength : 0),
minalign_);
PreAlign(prefix_size + root_offset_size + file_id_size, minalign_);
if (file_identifier) {
FLATBUFFERS_ASSERT(strlen(file_identifier) == kFileIdentifierLength);
PushBytes(reinterpret_cast<const uint8_t *>(file_identifier),
@ -1144,7 +1273,7 @@ class FlatBufferBuilder {
voffset_t id;
};
vector_downward buf_;
vector_downward<SizeT> buf_;
// Accumulating offsets of table members while it is being built.
// We store these in the scratch pad of buf_, after the vtable offsets.
@ -1153,6 +1282,31 @@ class FlatBufferBuilder {
// possible vtable.
voffset_t max_voffset_;
// This is the length of the 64-bit region of the buffer. The buffer supports
// 64-bit offsets by forcing serialization of those elements in the "tail"
// region of the buffer (i.e. "64-bit region"). To properly keep track of
// offsets that are referenced from the tail of the buffer to not overflow
// their size (e.g. Offset is a uint32_t type), the boundary of the 32-/64-bit
// regions must be tracked.
//
// [ Complete FlatBuffer ]
// [32-bit region][64-bit region]
// ^ ^
// | Tail of the buffer.
// |
// Tail of the 32-bit region of the buffer.
//
// This keeps track of the size of the 64-bit region so that the tail of the
// 32-bit region can be calculated as `GetSize() - length_of_64_bit_region_`.
//
// This will remain 0 if no 64-bit offset types are added to the buffer.
size_t length_of_64_bit_region_;
// When true, 64-bit offsets can still be added to the builder. When false,
// only 32-bit offsets can be added, and attempts to add a 64-bit offset will
// raise an assertion. This is typically a compile-time error in ordering the
// serialization of 64-bit offset fields not at the tail of the buffer.
// Ensure objects are not nested.
bool nested;
@ -1166,14 +1320,15 @@ class FlatBufferBuilder {
bool dedup_vtables_;
struct StringOffsetCompare {
StringOffsetCompare(const vector_downward &buf) : buf_(&buf) {}
explicit StringOffsetCompare(const vector_downward<SizeT> &buf)
: buf_(&buf) {}
bool operator()(const Offset<String> &a, const Offset<String> &b) const {
auto stra = reinterpret_cast<const String *>(buf_->data_at(a.o));
auto strb = reinterpret_cast<const String *>(buf_->data_at(b.o));
return StringLessThan(stra->data(), stra->size(), strb->data(),
strb->size());
}
const vector_downward *buf_;
const vector_downward<SizeT> *buf_;
};
// For use with CreateSharedString. Instantiated on first use only.
@ -1181,23 +1336,122 @@ class FlatBufferBuilder {
StringOffsetMap *string_pool;
private:
void CanAddOffset64() {
// If you hit this assertion, you are attempting to add a 64-bit offset to
// a 32-bit only builder. This is because the builder has overloads that
// differ only on the offset size returned: e.g.:
//
// FlatBufferBuilder builder;
// Offset64<String> string_offset = builder.CreateString<Offset64>();
//
// Either use a 64-bit aware builder, or don't try to create an Offset64
// return type.
//
// TODO(derekbailey): we can probably do more enable_if to avoid this
// looking like its possible to the user.
static_assert(Is64Aware, "cannot add 64-bit offset to a 32-bit builder");
// If you hit this assertion, you are attempting to add an 64-bit offset
// item after already serializing a 32-bit item. All 64-bit offsets have to
// added to the tail of the buffer before any 32-bit items can be added.
// Otherwise some items might not be addressable due to the maximum range of
// the 32-bit offset.
FLATBUFFERS_ASSERT(GetSize() == length_of_64_bit_region_);
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const char pointer to the data to be stored as a string.
/// @param[in] len The number of bytes that should be stored from `str`.
/// @return Returns the offset in the buffer where the string starts.
void CreateStringImpl(const char *str, size_t len) {
NotNested();
PreAlign<uoffset_t>(len + 1); // Always 0-terminated.
buf_.fill(1);
PushBytes(reinterpret_cast<const uint8_t *>(str), len);
PushElement(static_cast<uoffset_t>(len));
}
// Allocates space for a vector of structures.
// Must be completed with EndVectorOfStructs().
template<typename T> T *StartVectorOfStructs(size_t vector_size) {
StartVector(vector_size * sizeof(T) / AlignOf<T>(), sizeof(T),
AlignOf<T>());
template<typename T, template<typename> class OffsetT = Offset>
T *StartVectorOfStructs(size_t vector_size) {
StartVector<OffsetT>(vector_size * sizeof(T) / AlignOf<T>(), sizeof(T),
AlignOf<T>());
return reinterpret_cast<T *>(buf_.make_space(vector_size * sizeof(T)));
}
// End the vector of structures in the flatbuffers.
// Vector should have previously be started with StartVectorOfStructs().
template<typename T, template<typename> class OffsetT = Offset>
OffsetT<Vector<const T *>> EndVectorOfStructs(size_t vector_size) {
return OffsetT<Vector<const T *>>(
EndVector<typename Vector<const T *>::size_type,
typename OffsetT<Vector<const T *>>::offset_type>(
vector_size));
}
template<typename T>
Offset<Vector<const T *>> EndVectorOfStructs(size_t vector_size) {
return Offset<Vector<const T *>>(EndVector(vector_size));
typename std::enable_if<std::is_same<T, uoffset_t>::value, T>::type
CalculateOffset() {
// Default to the end of the 32-bit region. This may or may not be the end
// of the buffer, depending on if any 64-bit offsets have been added.
return GetSizeRelative32BitRegion();
}
// Specializations to handle the 64-bit CalculateOffset, which is relative to
// end of the buffer.
template<typename T>
typename std::enable_if<std::is_same<T, uoffset64_t>::value, T>::type
CalculateOffset() {
// This should never be compiled in when not using a 64-bit builder.
static_assert(Is64Aware, "invalid 64-bit offset in 32-bit builder");
// Store how big the 64-bit region of the buffer is, so we can determine
// where the 32/64 bit boundary is.
length_of_64_bit_region_ = GetSize();
return length_of_64_bit_region_;
}
};
/// @}
// Hack to `FlatBufferBuilder` mean `FlatBufferBuilder<false>` or
// `FlatBufferBuilder<>`, where the template < > syntax is required.
typedef FlatBufferBuilderImpl<false> FlatBufferBuilder;
typedef FlatBufferBuilderImpl<true> FlatBufferBuilder64;
// These are external due to GCC not allowing them in the class.
// See: https://stackoverflow.com/q/8061456/868247
template<>
template<>
inline Offset64<String> FlatBufferBuilder64::CreateString(const char *str,
size_t len) {
CanAddOffset64();
CreateStringImpl(str, len);
return Offset64<String>(
CalculateOffset<typename Offset64<String>::offset_type>());
}
// Used to distinguish from real Offsets.
template<typename T = void> struct EmptyOffset {};
// TODO(derekbailey): it would be nice to combine these two methods.
template<>
template<>
inline void FlatBufferBuilder64::StartVector<Offset64, uint32_t>(
size_t len, size_t elemsize, size_t alignment) {
CanAddOffset64();
StartVector<EmptyOffset, uint32_t>(len, elemsize, alignment);
}
template<>
template<>
inline void FlatBufferBuilder64::StartVector<Offset64, uint64_t>(
size_t len, size_t elemsize, size_t alignment) {
CanAddOffset64();
StartVector<EmptyOffset, uint64_t>(len, elemsize, alignment);
}
/// Helpers to get a typed pointer to objects that are currently being built.
/// @warning Creating new objects will lead to reallocations and invalidates
/// the pointer!
@ -1212,15 +1466,6 @@ const T *GetTemporaryPointer(FlatBufferBuilder &fbb, Offset<T> offset) {
return GetMutableTemporaryPointer<T>(fbb, offset);
}
template<typename T>
void FlatBufferBuilder::Required(Offset<T> table, voffset_t field) {
auto table_ptr = reinterpret_cast<const Table *>(buf_.data_at(table.o));
bool ok = table_ptr->GetOptionalFieldOffset(field) != 0;
// If this fails, the caller will show what field needs to be set.
FLATBUFFERS_ASSERT(ok);
(void)ok;
}
} // namespace flatbuffers
#endif // FLATBUFFERS_VECTOR_DOWNWARD_H_
#endif // FLATBUFFERS_FLATBUFFER_BUILDER_H_

View File

@ -76,8 +76,9 @@ inline const uint8_t *GetBufferStartFromRootPointer(const void *root) {
}
/// @brief This return the prefixed size of a FlatBuffer.
inline uoffset_t GetPrefixedSize(const uint8_t *buf) {
return ReadScalar<uoffset_t>(buf);
template<typename SizeT = uoffset_t>
inline SizeT GetPrefixedSize(const uint8_t *buf) {
return ReadScalar<SizeT>(buf);
}
// Base class for native objects (FlatBuffer data de-serialized into native

View File

@ -45,26 +45,27 @@ namespace flatbuffers {
// of type tokens.
// clang-format off
#define FLATBUFFERS_GEN_TYPES_SCALAR(TD) \
TD(NONE, "", uint8_t, byte, byte, byte, uint8, u8, UByte, UInt8, 0) \
TD(UTYPE, "", uint8_t, byte, byte, byte, uint8, u8, UByte, UInt8, 1) /* begin scalar/int */ \
TD(BOOL, "bool", uint8_t, boolean,bool, bool, bool, bool, Boolean, Bool, 2) \
TD(CHAR, "byte", int8_t, byte, int8, sbyte, int8, i8, Byte, Int8, 3) \
TD(UCHAR, "ubyte", uint8_t, byte, byte, byte, uint8, u8, UByte, UInt8, 4) \
TD(SHORT, "short", int16_t, short, int16, short, int16, i16, Short, Int16, 5) \
TD(USHORT, "ushort", uint16_t, short, uint16, ushort, uint16, u16, UShort, UInt16, 6) \
TD(INT, "int", int32_t, int, int32, int, int32, i32, Int, Int32, 7) \
TD(UINT, "uint", uint32_t, int, uint32, uint, uint32, u32, UInt, UInt32, 8) \
TD(LONG, "long", int64_t, long, int64, long, int64, i64, Long, Int64, 9) \
TD(ULONG, "ulong", uint64_t, long, uint64, ulong, uint64, u64, ULong, UInt64, 10) /* end int */ \
TD(FLOAT, "float", float, float, float32, float, float32, f32, Float, Float32, 11) /* begin float */ \
TD(DOUBLE, "double", double, double, float64, double, float64, f64, Double, Double, 12) /* end float/scalar */
TD(NONE, "", uint8_t, byte, byte, byte, uint8, u8, UByte, UInt8, 0) \
TD(UTYPE, "", uint8_t, byte, byte, byte, uint8, u8, UByte, UInt8, 1) /* begin scalar/int */ \
TD(BOOL, "bool", uint8_t, boolean,bool, bool, bool, bool, Boolean, Bool, 2) \
TD(CHAR, "byte", int8_t, byte, int8, sbyte, int8, i8, Byte, Int8, 3) \
TD(UCHAR, "ubyte", uint8_t, byte, byte, byte, uint8, u8, UByte, UInt8, 4) \
TD(SHORT, "short", int16_t, short, int16, short, int16, i16, Short, Int16, 5) \
TD(USHORT, "ushort", uint16_t, short, uint16, ushort, uint16, u16, UShort, UInt16, 6) \
TD(INT, "int", int32_t, int, int32, int, int32, i32, Int, Int32, 7) \
TD(UINT, "uint", uint32_t, int, uint32, uint, uint32, u32, UInt, UInt32, 8) \
TD(LONG, "long", int64_t, long, int64, long, int64, i64, Long, Int64, 9) \
TD(ULONG, "ulong", uint64_t, long, uint64, ulong, uint64, u64, ULong, UInt64, 10) /* end int */ \
TD(FLOAT, "float", float, float, float32, float, float32, f32, Float, Float32, 11) /* begin float */ \
TD(DOUBLE, "double", double, double, float64, double, float64, f64, Double, Double, 12) /* end float/scalar */
#define FLATBUFFERS_GEN_TYPES_POINTER(TD) \
TD(STRING, "string", Offset<void>, int, int, StringOffset, int, unused, Int, Offset<String>, 13) \
TD(VECTOR, "", Offset<void>, int, int, VectorOffset, int, unused, Int, Offset<UOffset>, 14) \
TD(STRUCT, "", Offset<void>, int, int, int, int, unused, Int, Offset<UOffset>, 15) \
TD(UNION, "", Offset<void>, int, int, int, int, unused, Int, Offset<UOffset>, 16)
TD(STRING, "string", Offset<void>, int, int, StringOffset, int, unused, Int, Offset<String>, 13) \
TD(VECTOR, "", Offset<void>, int, int, VectorOffset, int, unused, Int, Offset<UOffset>, 14) \
TD(VECTOR64, "", Offset64<void>, int, int, VectorOffset, int, unused, Int, Offset<UOffset>, 18) \
TD(STRUCT, "", Offset<void>, int, int, int, int, unused, Int, Offset<UOffset>, 15) \
TD(UNION, "", Offset<void>, int, int, int, int, unused, Int, Offset<UOffset>, 16)
#define FLATBUFFERS_GEN_TYPE_ARRAY(TD) \
TD(ARRAY, "", int, int, int, int, int, unused, Int, Offset<UOffset>, 17)
TD(ARRAY, "", int, int, int, int, int, unused, Int, Offset<UOffset>, 17)
// The fields are:
// - enum
// - FlatBuffers schema type.
@ -139,6 +140,8 @@ inline bool IsLong (BaseType t) { return t == BASE_TYPE_LONG ||
inline bool IsBool (BaseType t) { return t == BASE_TYPE_BOOL; }
inline bool IsOneByte(BaseType t) { return t >= BASE_TYPE_UTYPE &&
t <= BASE_TYPE_UCHAR; }
inline bool IsVector (BaseType t) { return t == BASE_TYPE_VECTOR ||
t == BASE_TYPE_VECTOR64; }
inline bool IsUnsigned(BaseType t) {
return (t == BASE_TYPE_UTYPE) || (t == BASE_TYPE_UCHAR) ||
@ -210,7 +213,8 @@ struct Type {
bool Deserialize(const Parser &parser, const reflection::Type *type);
BaseType base_type;
BaseType element; // only set if t == BASE_TYPE_VECTOR
BaseType element; // only set if t == BASE_TYPE_VECTOR or
// BASE_TYPE_VECTOR64
StructDef *struct_def; // only set if t or element == BASE_TYPE_STRUCT
EnumDef *enum_def; // set if t == BASE_TYPE_UNION / BASE_TYPE_UTYPE,
// or for an integral type derived from an enum.
@ -326,6 +330,7 @@ struct FieldDef : public Definition {
shared(false),
native_inline(false),
flexbuffer(false),
offset64(false),
presence(kDefault),
nested_flatbuffer(nullptr),
padding(0),
@ -352,6 +357,7 @@ struct FieldDef : public Definition {
bool native_inline; // Field will be defined inline (instead of as a pointer)
// for native tables if field is a struct.
bool flexbuffer; // This field contains FlexBuffer data.
bool offset64; // If the field uses 64-bit offsets.
enum Presence {
// Field must always be present.
@ -528,9 +534,7 @@ inline bool IsUnionType(const Type &type) {
return IsUnion(type) && IsInteger(type.base_type);
}
inline bool IsVector(const Type &type) {
return type.base_type == BASE_TYPE_VECTOR;
}
inline bool IsVector(const Type &type) { return IsVector(type.base_type); }
inline bool IsVectorOfStruct(const Type &type) {
return IsVector(type) && IsStruct(type.VectorType());
@ -952,6 +956,13 @@ class Parser : public ParserState {
known_attributes_["native_default"] = true;
known_attributes_["flexbuffer"] = true;
known_attributes_["private"] = true;
// An attribute added to a field to indicate that is uses 64-bit addressing.
known_attributes_["offset64"] = true;
// An attribute added to a vector field to indicate that it uses 64-bit
// addressing and it has a 64-bit length.
known_attributes_["vector64"] = true;
}
// Copying is not allowed
@ -1062,7 +1073,7 @@ class Parser : public ParserState {
FLATBUFFERS_CHECKED_ERROR ParseAnyValue(Value &val, FieldDef *field,
size_t parent_fieldn,
const StructDef *parent_struct_def,
uoffset_t count,
size_t count,
bool inside_vector = false);
template<typename F>
FLATBUFFERS_CHECKED_ERROR ParseTableDelimiters(size_t &fieldn,
@ -1074,7 +1085,7 @@ class Parser : public ParserState {
void SerializeStruct(FlatBufferBuilder &builder, const StructDef &struct_def,
const Value &val);
template<typename F>
FLATBUFFERS_CHECKED_ERROR ParseVectorDelimiters(uoffset_t &count, F body);
FLATBUFFERS_CHECKED_ERROR ParseVectorDelimiters(size_t &count, F body);
FLATBUFFERS_CHECKED_ERROR ParseVector(const Type &type, uoffset_t *ovalue,
FieldDef *field, size_t fieldn);
FLATBUFFERS_CHECKED_ERROR ParseArray(Value &array);
@ -1139,6 +1150,7 @@ class Parser : public ParserState {
bool SupportsAdvancedArrayFeatures() const;
bool SupportsOptionalScalars() const;
bool SupportsDefaultVectorsAndStrings() const;
bool Supports64BitOffsets() const;
Namespace *UniqueNamespace(Namespace *ns);
FLATBUFFERS_CHECKED_ERROR RecurseError();
@ -1288,8 +1300,7 @@ extern bool GenerateSwift(const Parser &parser, const std::string &path,
// Generate a schema file from the internal representation, useful after
// parsing a .proto schema.
extern std::string GenerateFBS(const Parser &parser,
const std::string &file_name,
bool no_log);
const std::string &file_name, bool no_log);
extern bool GenerateFBS(const Parser &parser, const std::string &path,
const std::string &file_name, bool no_log);

View File

@ -66,6 +66,7 @@ inline size_t GetTypeSize(reflection::BaseType base_type) {
4, // Union
0, // Array. Only used in structs. 0 was chosen to prevent out-of-bounds
// errors.
8, // Vector64
0 // MaxBaseType. This must be kept the last entry in this array.
};

View File

@ -64,10 +64,11 @@ enum BaseType {
Obj = 15,
Union = 16,
Array = 17,
MaxBaseType = 18
Vector64 = 18,
MaxBaseType = 19
};
inline const BaseType (&EnumValuesBaseType())[19] {
inline const BaseType (&EnumValuesBaseType())[20] {
static const BaseType values[] = {
None,
UType,
@ -87,13 +88,14 @@ inline const BaseType (&EnumValuesBaseType())[19] {
Obj,
Union,
Array,
Vector64,
MaxBaseType
};
return values;
}
inline const char * const *EnumNamesBaseType() {
static const char * const names[20] = {
static const char * const names[21] = {
"None",
"UType",
"Bool",
@ -112,6 +114,7 @@ inline const char * const *EnumNamesBaseType() {
"Obj",
"Union",
"Array",
"Vector64",
"MaxBaseType",
nullptr
};
@ -601,7 +604,8 @@ struct Field FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table {
VT_ATTRIBUTES = 22,
VT_DOCUMENTATION = 24,
VT_OPTIONAL = 26,
VT_PADDING = 28
VT_PADDING = 28,
VT_OFFSET64 = 30
};
const ::flatbuffers::String *name() const {
return GetPointer<const ::flatbuffers::String *>(VT_NAME);
@ -649,6 +653,10 @@ struct Field FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table {
uint16_t padding() const {
return GetField<uint16_t>(VT_PADDING, 0);
}
/// If the field uses 64-bit offsets.
bool offset64() const {
return GetField<uint8_t>(VT_OFFSET64, 0) != 0;
}
bool Verify(::flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyOffsetRequired(verifier, VT_NAME) &&
@ -670,6 +678,7 @@ struct Field FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table {
verifier.VerifyVectorOfStrings(documentation()) &&
VerifyField<uint8_t>(verifier, VT_OPTIONAL, 1) &&
VerifyField<uint16_t>(verifier, VT_PADDING, 2) &&
VerifyField<uint8_t>(verifier, VT_OFFSET64, 1) &&
verifier.EndTable();
}
};
@ -717,6 +726,9 @@ struct FieldBuilder {
void add_padding(uint16_t padding) {
fbb_.AddElement<uint16_t>(Field::VT_PADDING, padding, 0);
}
void add_offset64(bool offset64) {
fbb_.AddElement<uint8_t>(Field::VT_OFFSET64, static_cast<uint8_t>(offset64), 0);
}
explicit FieldBuilder(::flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
@ -744,7 +756,8 @@ inline ::flatbuffers::Offset<Field> CreateField(
::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset<reflection::KeyValue>>> attributes = 0,
::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset<::flatbuffers::String>>> documentation = 0,
bool optional = false,
uint16_t padding = 0) {
uint16_t padding = 0,
bool offset64 = false) {
FieldBuilder builder_(_fbb);
builder_.add_default_real(default_real);
builder_.add_default_integer(default_integer);
@ -755,6 +768,7 @@ inline ::flatbuffers::Offset<Field> CreateField(
builder_.add_padding(padding);
builder_.add_offset(offset);
builder_.add_id(id);
builder_.add_offset64(offset64);
builder_.add_optional(optional);
builder_.add_key(key);
builder_.add_required(required);
@ -776,7 +790,8 @@ inline ::flatbuffers::Offset<Field> CreateFieldDirect(
std::vector<::flatbuffers::Offset<reflection::KeyValue>> *attributes = nullptr,
const std::vector<::flatbuffers::Offset<::flatbuffers::String>> *documentation = nullptr,
bool optional = false,
uint16_t padding = 0) {
uint16_t padding = 0,
bool offset64 = false) {
auto name__ = name ? _fbb.CreateString(name) : 0;
auto attributes__ = attributes ? _fbb.CreateVectorOfSortedTables<reflection::KeyValue>(attributes) : 0;
auto documentation__ = documentation ? _fbb.CreateVector<::flatbuffers::Offset<::flatbuffers::String>>(*documentation) : 0;
@ -794,7 +809,8 @@ inline ::flatbuffers::Offset<Field> CreateFieldDirect(
attributes__,
documentation__,
optional,
padding);
padding,
offset64);
}
struct Object FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table {

View File

@ -47,14 +47,24 @@ class Table {
return field_offset ? ReadScalar<T>(data_ + field_offset) : defaultval;
}
template<typename P> P GetPointer(voffset_t field) {
template<typename P, typename OffsetSize = uoffset_t>
P GetPointer(voffset_t field) {
auto field_offset = GetOptionalFieldOffset(field);
auto p = data_ + field_offset;
return field_offset ? reinterpret_cast<P>(p + ReadScalar<uoffset_t>(p))
return field_offset ? reinterpret_cast<P>(p + ReadScalar<OffsetSize>(p))
: nullptr;
}
template<typename P> P GetPointer(voffset_t field) const {
return const_cast<Table *>(this)->GetPointer<P>(field);
template<typename P, typename OffsetSize = uoffset_t>
P GetPointer(voffset_t field) const {
return const_cast<Table *>(this)->GetPointer<P, OffsetSize>(field);
}
template<typename P> P GetPointer64(voffset_t field) {
return GetPointer<P, uoffset64_t>(field);
}
template<typename P> P GetPointer64(voffset_t field) const {
return GetPointer<P, uoffset64_t>(field);
}
template<typename P> P GetStruct(voffset_t field) const {
@ -131,15 +141,25 @@ class Table {
}
// Versions for offsets.
template<typename OffsetT = uoffset_t>
bool VerifyOffset(const Verifier &verifier, voffset_t field) const {
auto field_offset = GetOptionalFieldOffset(field);
return !field_offset || verifier.VerifyOffset(data_, field_offset);
return !field_offset || verifier.VerifyOffset<OffsetT>(data_, field_offset);
}
template<typename OffsetT = uoffset_t>
bool VerifyOffsetRequired(const Verifier &verifier, voffset_t field) const {
auto field_offset = GetOptionalFieldOffset(field);
return verifier.Check(field_offset != 0) &&
verifier.VerifyOffset(data_, field_offset);
verifier.VerifyOffset<OffsetT>(data_, field_offset);
}
bool VerifyOffset64(const Verifier &verifier, voffset_t field) const {
return VerifyOffset<uoffset64_t>(verifier, field);
}
bool VerifyOffset64Required(const Verifier &verifier, voffset_t field) const {
return VerifyOffsetRequired<uoffset64_t>(verifier, field);
}
private:

View File

@ -27,7 +27,8 @@ struct String;
// An STL compatible iterator implementation for Vector below, effectively
// calling Get() for every element.
template<typename T, typename IT, typename Data = uint8_t *>
template<typename T, typename IT, typename Data = uint8_t *,
typename SizeT = uoffset_t>
struct VectorIterator {
typedef std::random_access_iterator_tag iterator_category;
typedef IT value_type;
@ -35,8 +36,9 @@ struct VectorIterator {
typedef IT *pointer;
typedef IT &reference;
VectorIterator(Data data, uoffset_t i)
: data_(data + IndirectHelper<T>::element_stride * i) {}
static const SizeT element_stride = IndirectHelper<T>::element_stride;
VectorIterator(Data data, SizeT i) : data_(data + element_stride * i) {}
VectorIterator(const VectorIterator &other) : data_(other.data_) {}
VectorIterator() : data_(nullptr) {}
@ -63,7 +65,7 @@ struct VectorIterator {
}
difference_type operator-(const VectorIterator &other) const {
return (data_ - other.data_) / IndirectHelper<T>::element_stride;
return (data_ - other.data_) / element_stride;
}
// Note: return type is incompatible with the standard
@ -75,44 +77,42 @@ struct VectorIterator {
IT operator->() const { return IndirectHelper<T>::Read(data_, 0); }
VectorIterator &operator++() {
data_ += IndirectHelper<T>::element_stride;
data_ += element_stride;
return *this;
}
VectorIterator operator++(int) {
VectorIterator temp(data_, 0);
data_ += IndirectHelper<T>::element_stride;
data_ += element_stride;
return temp;
}
VectorIterator operator+(const uoffset_t &offset) const {
return VectorIterator(data_ + offset * IndirectHelper<T>::element_stride,
0);
VectorIterator operator+(const SizeT &offset) const {
return VectorIterator(data_ + offset * element_stride, 0);
}
VectorIterator &operator+=(const uoffset_t &offset) {
data_ += offset * IndirectHelper<T>::element_stride;
VectorIterator &operator+=(const SizeT &offset) {
data_ += offset * element_stride;
return *this;
}
VectorIterator &operator--() {
data_ -= IndirectHelper<T>::element_stride;
data_ -= element_stride;
return *this;
}
VectorIterator operator--(int) {
VectorIterator temp(data_, 0);
data_ -= IndirectHelper<T>::element_stride;
data_ -= element_stride;
return temp;
}
VectorIterator operator-(const uoffset_t &offset) const {
return VectorIterator(data_ - offset * IndirectHelper<T>::element_stride,
0);
VectorIterator operator-(const SizeT &offset) const {
return VectorIterator(data_ - offset * element_stride, 0);
}
VectorIterator &operator-=(const uoffset_t &offset) {
data_ -= offset * IndirectHelper<T>::element_stride;
VectorIterator &operator-=(const SizeT &offset) {
data_ -= offset * element_stride;
return *this;
}
@ -120,8 +120,8 @@ struct VectorIterator {
Data data_;
};
template<typename T, typename IT>
using VectorConstIterator = VectorIterator<T, IT, const uint8_t *>;
template<typename T, typename IT, typename SizeT = uoffset_t>
using VectorConstIterator = VectorIterator<T, IT, const uint8_t *, SizeT>;
template<typename Iterator>
struct VectorReverseIterator : public std::reverse_iterator<Iterator> {
@ -145,11 +145,14 @@ struct VectorReverseIterator : public std::reverse_iterator<Iterator> {
// This is used as a helper type for accessing vectors.
// Vector::data() assumes the vector elements start after the length field.
template<typename T> class Vector {
template<typename T, typename SizeT = uoffset_t> class Vector {
public:
typedef VectorIterator<T, typename IndirectHelper<T>::mutable_return_type>
typedef VectorIterator<T,
typename IndirectHelper<T>::mutable_return_type,
uint8_t *, SizeT>
iterator;
typedef VectorConstIterator<T, typename IndirectHelper<T>::return_type>
typedef VectorConstIterator<T, typename IndirectHelper<T>::return_type,
SizeT>
const_iterator;
typedef VectorReverseIterator<iterator> reverse_iterator;
typedef VectorReverseIterator<const_iterator> const_reverse_iterator;
@ -160,39 +163,41 @@ template<typename T> class Vector {
static FLATBUFFERS_CONSTEXPR bool is_span_observable =
scalar_tag::value && (FLATBUFFERS_LITTLEENDIAN || sizeof(T) == 1);
uoffset_t size() const { return EndianScalar(length_); }
SizeT size() const { return EndianScalar(length_); }
// Deprecated: use size(). Here for backwards compatibility.
FLATBUFFERS_ATTRIBUTE([[deprecated("use size() instead")]])
uoffset_t Length() const { return size(); }
SizeT Length() const { return size(); }
typedef SizeT size_type;
typedef typename IndirectHelper<T>::return_type return_type;
typedef typename IndirectHelper<T>::mutable_return_type mutable_return_type;
typedef typename IndirectHelper<T>::mutable_return_type
mutable_return_type;
typedef return_type value_type;
return_type Get(uoffset_t i) const {
return_type Get(SizeT i) const {
FLATBUFFERS_ASSERT(i < size());
return IndirectHelper<T>::Read(Data(), i);
}
return_type operator[](uoffset_t i) const { return Get(i); }
return_type operator[](SizeT i) const { return Get(i); }
// If this is a Vector of enums, T will be its storage type, not the enum
// type. This function makes it convenient to retrieve value with enum
// type E.
template<typename E> E GetEnum(uoffset_t i) const {
template<typename E> E GetEnum(SizeT i) const {
return static_cast<E>(Get(i));
}
// If this a vector of unions, this does the cast for you. There's no check
// to make sure this is the right type!
template<typename U> const U *GetAs(uoffset_t i) const {
template<typename U> const U *GetAs(SizeT i) const {
return reinterpret_cast<const U *>(Get(i));
}
// If this a vector of unions, this does the cast for you. There's no check
// to make sure this is actually a string!
const String *GetAsString(uoffset_t i) const {
const String *GetAsString(SizeT i) const {
return reinterpret_cast<const String *>(Get(i));
}
@ -226,7 +231,7 @@ template<typename T> class Vector {
// Change elements if you have a non-const pointer to this object.
// Scalars only. See reflection.h, and the documentation.
void Mutate(uoffset_t i, const T &val) {
void Mutate(SizeT i, const T &val) {
FLATBUFFERS_ASSERT(i < size());
WriteScalar(data() + i, val);
}
@ -234,15 +239,15 @@ template<typename T> class Vector {
// Change an element of a vector of tables (or strings).
// "val" points to the new table/string, as you can obtain from
// e.g. reflection::AddFlatBuffer().
void MutateOffset(uoffset_t i, const uint8_t *val) {
void MutateOffset(SizeT i, const uint8_t *val) {
FLATBUFFERS_ASSERT(i < size());
static_assert(sizeof(T) == sizeof(uoffset_t), "Unrelated types");
static_assert(sizeof(T) == sizeof(SizeT), "Unrelated types");
WriteScalar(data() + i,
static_cast<uoffset_t>(val - (Data() + i * sizeof(uoffset_t))));
static_cast<SizeT>(val - (Data() + i * sizeof(SizeT))));
}
// Get a mutable pointer to tables/strings inside this vector.
mutable_return_type GetMutableObject(uoffset_t i) const {
mutable_return_type GetMutableObject(SizeT i) const {
FLATBUFFERS_ASSERT(i < size());
return const_cast<mutable_return_type>(IndirectHelper<T>::Read(Data(), i));
}
@ -280,7 +285,7 @@ template<typename T> class Vector {
// try to construct these manually.
Vector();
uoffset_t length_;
SizeT length_;
private:
// This class is a pointer. Copying will therefore create an invalid object.
@ -299,6 +304,8 @@ template<typename T> class Vector {
}
};
template<typename T> using Vector64 = Vector<T, uoffset64_t>;
template<class U>
FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<U> make_span(Vector<U> &vec)
FLATBUFFERS_NOEXCEPT {

View File

@ -17,6 +17,8 @@
#ifndef FLATBUFFERS_VECTOR_DOWNWARD_H_
#define FLATBUFFERS_VECTOR_DOWNWARD_H_
#include <cstdint>
#include <algorithm>
#include "flatbuffers/base.h"
@ -31,13 +33,15 @@ namespace flatbuffers {
// Since this vector leaves the lower part unused, we support a "scratch-pad"
// that can be stored there for temporary data, to share the allocated space.
// Essentially, this supports 2 std::vectors in a single buffer.
class vector_downward {
template<typename SizeT = uoffset_t> class vector_downward {
public:
explicit vector_downward(size_t initial_size, Allocator *allocator,
bool own_allocator, size_t buffer_minalign)
bool own_allocator, size_t buffer_minalign,
const SizeT max_size = FLATBUFFERS_MAX_BUFFER_SIZE)
: allocator_(allocator),
own_allocator_(own_allocator),
initial_size_(initial_size),
max_size_(max_size),
buffer_minalign_(buffer_minalign),
reserved_(0),
size_(0),
@ -50,6 +54,7 @@ class vector_downward {
: allocator_(other.allocator_),
own_allocator_(other.own_allocator_),
initial_size_(other.initial_size_),
max_size_(other.max_size_),
buffer_minalign_(other.buffer_minalign_),
reserved_(other.reserved_),
size_(other.size_),
@ -111,7 +116,7 @@ class vector_downward {
uint8_t *release_raw(size_t &allocated_bytes, size_t &offset) {
auto *buf = buf_;
allocated_bytes = reserved_;
offset = static_cast<size_t>(cur_ - buf_);
offset = vector_downward::offset();
// release_raw only relinquishes the buffer ownership.
// Does not deallocate or reset the allocator. Destructor will do that.
@ -136,10 +141,10 @@ class vector_downward {
size_t ensure_space(size_t len) {
FLATBUFFERS_ASSERT(cur_ >= scratch_ && scratch_ >= buf_);
if (len > static_cast<size_t>(cur_ - scratch_)) { reallocate(len); }
// Beyond this, signed offsets may not have enough range:
// (FlatBuffers > 2GB not supported).
FLATBUFFERS_ASSERT(size() < FLATBUFFERS_MAX_BUFFER_SIZE);
// If the length is larger than the unused part of the buffer, we need to
// grow.
if (len > unused_buffer_size()) { reallocate(len); }
FLATBUFFERS_ASSERT(size() < max_size_);
return len;
}
@ -147,7 +152,7 @@ class vector_downward {
if (len) {
ensure_space(len);
cur_ -= len;
size_ += static_cast<uoffset_t>(len);
size_ += static_cast<SizeT>(len);
}
return cur_;
}
@ -155,11 +160,17 @@ class vector_downward {
// Returns nullptr if using the DefaultAllocator.
Allocator *get_custom_allocator() { return allocator_; }
inline uoffset_t size() const { return size_; }
// The current offset into the buffer.
size_t offset() const { return cur_ - buf_; }
uoffset_t scratch_size() const {
return static_cast<uoffset_t>(scratch_ - buf_);
}
// The total size of the vector (both the buffer and scratch parts).
inline SizeT size() const { return size_; }
// The size of the buffer part of the vector that is currently unused.
SizeT unused_buffer_size() const { return static_cast<SizeT>(cur_ - scratch_); }
// The size of the scratch part of the vector.
SizeT scratch_size() const { return static_cast<SizeT>(scratch_ - buf_); }
size_t capacity() const { return reserved_; }
@ -211,7 +222,7 @@ class vector_downward {
void pop(size_t bytes_to_remove) {
cur_ += bytes_to_remove;
size_ -= static_cast<uoffset_t>(bytes_to_remove);
size_ -= static_cast<SizeT>(bytes_to_remove);
}
void scratch_pop(size_t bytes_to_remove) { scratch_ -= bytes_to_remove; }
@ -224,6 +235,7 @@ class vector_downward {
swap(buffer_minalign_, other.buffer_minalign_);
swap(reserved_, other.reserved_);
swap(size_, other.size_);
swap(max_size_, other.max_size_);
swap(buf_, other.buf_);
swap(cur_, other.cur_);
swap(scratch_, other.scratch_);
@ -243,9 +255,12 @@ class vector_downward {
Allocator *allocator_;
bool own_allocator_;
size_t initial_size_;
// The maximum size the vector can be.
SizeT max_size_;
size_t buffer_minalign_;
size_t reserved_;
uoffset_t size_;
SizeT size_;
uint8_t *buf_;
uint8_t *cur_; // Points at location between empty (below) and used (above).
uint8_t *scratch_; // Points to the end of the scratchpad in use.

View File

@ -34,12 +34,16 @@ class Verifier FLATBUFFERS_FINAL_CLASS {
bool check_alignment = true;
// If true, run verifier on nested flatbuffers
bool check_nested_flatbuffers = true;
// The maximum size of a buffer.
size_t max_size = FLATBUFFERS_MAX_BUFFER_SIZE;
// Use assertions to check for errors.
bool assert = false;
};
explicit Verifier(const uint8_t *const buf, const size_t buf_len,
const Options &opts)
: buf_(buf), size_(buf_len), opts_(opts) {
FLATBUFFERS_ASSERT(size_ < FLATBUFFERS_MAX_BUFFER_SIZE);
FLATBUFFERS_ASSERT(size_ < opts.max_size);
}
// Deprecated API, please construct with Verifier::Options.
@ -58,7 +62,7 @@ class Verifier FLATBUFFERS_FINAL_CLASS {
bool Check(const bool ok) const {
// clang-format off
#ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE
FLATBUFFERS_ASSERT(ok);
if (opts_.assert) { FLATBUFFERS_ASSERT(ok); }
#endif
#ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
if (!ok)
@ -113,41 +117,43 @@ class Verifier FLATBUFFERS_FINAL_CLASS {
}
// Verify a pointer (may be NULL) of any vector type.
template<typename T> bool VerifyVector(const Vector<T> *const vec) const {
return !vec || VerifyVectorOrString(reinterpret_cast<const uint8_t *>(vec),
sizeof(T));
template<int &..., typename T, typename LenT>
bool VerifyVector(const Vector<T, LenT> *const vec) const {
return !vec || VerifyVectorOrString<LenT>(
reinterpret_cast<const uint8_t *>(vec), sizeof(T));
}
// Verify a pointer (may be NULL) of a vector to struct.
template<typename T>
bool VerifyVector(const Vector<const T *> *const vec) const {
return VerifyVector(reinterpret_cast<const Vector<T> *>(vec));
template<int &..., typename T, typename LenT>
bool VerifyVector(const Vector<const T *, LenT> *const vec) const {
return VerifyVector(reinterpret_cast<const Vector<T, LenT> *>(vec));
}
// Verify a pointer (may be NULL) to string.
bool VerifyString(const String *const str) const {
size_t end;
return !str || (VerifyVectorOrString(reinterpret_cast<const uint8_t *>(str),
1, &end) &&
return !str || (VerifyVectorOrString<uoffset_t>(
reinterpret_cast<const uint8_t *>(str), 1, &end) &&
Verify(end, 1) && // Must have terminator
Check(buf_[end] == '\0')); // Terminating byte must be 0.
}
// Common code between vectors and strings.
template<typename LenT = uoffset_t>
bool VerifyVectorOrString(const uint8_t *const vec, const size_t elem_size,
size_t *const end = nullptr) const {
const auto veco = static_cast<size_t>(vec - buf_);
const auto vec_offset = static_cast<size_t>(vec - buf_);
// Check we can read the size field.
if (!Verify<uoffset_t>(veco)) return false;
if (!Verify<LenT>(vec_offset)) return false;
// Check the whole array. If this is a string, the byte past the array must
// be 0.
const auto size = ReadScalar<uoffset_t>(vec);
const auto max_elems = FLATBUFFERS_MAX_BUFFER_SIZE / elem_size;
const LenT size = ReadScalar<LenT>(vec);
const auto max_elems = opts_.max_size / elem_size;
if (!Check(size < max_elems))
return false; // Protect against byte_size overflowing.
const auto byte_size = sizeof(size) + elem_size * size;
if (end) *end = veco + byte_size;
return Verify(veco, byte_size);
const auto byte_size = sizeof(LenT) + elem_size * size;
if (end) *end = vec_offset + byte_size;
return Verify(vec_offset, byte_size);
}
// Special case for string contents, after the above has been called.
@ -203,7 +209,7 @@ class Verifier FLATBUFFERS_FINAL_CLASS {
}
// Call T::Verify, which must be in the generated code for this type.
const auto o = VerifyOffset(start);
const auto o = VerifyOffset<uoffset_t>(start);
return Check(o != 0) &&
reinterpret_cast<const T *>(buf_ + start + o)->Verify(*this)
// clang-format off
@ -214,8 +220,8 @@ class Verifier FLATBUFFERS_FINAL_CLASS {
// clang-format on
}
template<typename T>
bool VerifyNestedFlatBuffer(const Vector<uint8_t> *const buf,
template<typename T, int &..., typename SizeT>
bool VerifyNestedFlatBuffer(const Vector<uint8_t, SizeT> *const buf,
const char *const identifier) {
// Caller opted out of this.
if (!opts_.check_nested_flatbuffers) return true;
@ -226,7 +232,7 @@ class Verifier FLATBUFFERS_FINAL_CLASS {
// If there is a nested buffer, it must be greater than the min size.
if (!Check(buf->size() >= FLATBUFFERS_MIN_BUFFER_SIZE)) return false;
Verifier nested_verifier(buf->data(), buf->size());
Verifier nested_verifier(buf->data(), buf->size(), opts_);
return nested_verifier.VerifyBuffer<T>(identifier);
}
@ -237,29 +243,30 @@ class Verifier FLATBUFFERS_FINAL_CLASS {
return VerifyBufferFromStart<T>(identifier, 0);
}
template<typename T>
template<typename T, typename SizeT = uoffset_t>
bool VerifySizePrefixedBuffer(const char *const identifier) {
return Verify<uoffset_t>(0U) &&
Check(ReadScalar<uoffset_t>(buf_) == size_ - sizeof(uoffset_t)) &&
VerifyBufferFromStart<T>(identifier, sizeof(uoffset_t));
return Verify<SizeT>(0U) &&
Check(ReadScalar<SizeT>(buf_) == size_ - sizeof(SizeT)) &&
VerifyBufferFromStart<T>(identifier, sizeof(SizeT));
}
uoffset_t VerifyOffset(const size_t start) const {
if (!Verify<uoffset_t>(start)) return 0;
const auto o = ReadScalar<uoffset_t>(buf_ + start);
template<typename OffsetT = uoffset_t, typename SOffsetT = soffset_t>
size_t VerifyOffset(const size_t start) const {
if (!Verify<OffsetT>(start)) return 0;
const auto o = ReadScalar<OffsetT>(buf_ + start);
// May not point to itself.
if (!Check(o != 0)) return 0;
// Can't wrap around / buffers are max 2GB.
if (!Check(static_cast<soffset_t>(o) >= 0)) return 0;
// Can't wrap around larger than the max size.
if (!Check(static_cast<SOffsetT>(o) >= 0)) return 0;
// Must be inside the buffer to create a pointer from it (pointer outside
// buffer is UB).
if (!Verify(start + o, 1)) return 0;
return o;
}
uoffset_t VerifyOffset(const uint8_t *const base,
const voffset_t start) const {
return VerifyOffset(static_cast<size_t>(base - buf_) + start);
template<typename OffsetT = uoffset_t>
size_t VerifyOffset(const uint8_t *const base, const voffset_t start) const {
return VerifyOffset<OffsetT>(static_cast<size_t>(base - buf_) + start);
}
// Called at the start of a table to increase counters measuring data
@ -312,6 +319,12 @@ class Verifier FLATBUFFERS_FINAL_CLASS {
std::vector<uint8_t> *flex_reuse_tracker_ = nullptr;
};
// Specialization for 64-bit offsets.
template<>
inline size_t Verifier::VerifyOffset<uoffset64_t>(const size_t start) const {
return VerifyOffset<uoffset64_t, soffset64_t>(start);
}
} // namespace flatbuffers
#endif // FLATBUFFERS_VERIFIER_H_

View File

@ -23,9 +23,10 @@ public final class BaseType {
public static final byte Obj = 15;
public static final byte Union = 16;
public static final byte Array = 17;
public static final byte MaxBaseType = 18;
public static final byte Vector64 = 18;
public static final byte MaxBaseType = 19;
public static final String[] names = { "None", "UType", "Bool", "Byte", "UByte", "Short", "UShort", "Int", "UInt", "Long", "ULong", "Float", "Double", "String", "Vector", "Obj", "Union", "Array", "MaxBaseType", };
public static final String[] names = { "None", "UType", "Bool", "Byte", "UByte", "Short", "UShort", "Int", "UInt", "Long", "ULong", "Float", "Double", "String", "Vector", "Obj", "Union", "Array", "Vector64", "MaxBaseType", };
public static String name(int e) { return names[e]; }
}

View File

@ -55,6 +55,10 @@ public final class Field extends Table {
* Number of padding octets to always add after this field. Structs only.
*/
public int padding() { int o = __offset(28); return o != 0 ? bb.getShort(o + bb_pos) & 0xFFFF : 0; }
/**
* If the field uses 64-bit offsets.
*/
public boolean offset64() { int o = __offset(30); return o != 0 ? 0!=bb.get(o + bb_pos) : false; }
public static int createField(FlatBufferBuilder builder,
int nameOffset,
@ -69,8 +73,9 @@ public final class Field extends Table {
int attributesOffset,
int documentationOffset,
boolean optional,
int padding) {
builder.startTable(13);
int padding,
boolean offset64) {
builder.startTable(14);
Field.addDefaultReal(builder, defaultReal);
Field.addDefaultInteger(builder, defaultInteger);
Field.addDocumentation(builder, documentationOffset);
@ -80,6 +85,7 @@ public final class Field extends Table {
Field.addPadding(builder, padding);
Field.addOffset(builder, offset);
Field.addId(builder, id);
Field.addOffset64(builder, offset64);
Field.addOptional(builder, optional);
Field.addKey(builder, key);
Field.addRequired(builder, required);
@ -87,7 +93,7 @@ public final class Field extends Table {
return Field.endField(builder);
}
public static void startField(FlatBufferBuilder builder) { builder.startTable(13); }
public static void startField(FlatBufferBuilder builder) { builder.startTable(14); }
public static void addName(FlatBufferBuilder builder, int nameOffset) { builder.addOffset(nameOffset); builder.slot(0); }
public static void addType(FlatBufferBuilder builder, int typeOffset) { builder.addOffset(1, typeOffset, 0); }
public static void addId(FlatBufferBuilder builder, int id) { builder.addShort(2, (short) id, (short) 0); }
@ -105,6 +111,7 @@ public final class Field extends Table {
public static void startDocumentationVector(FlatBufferBuilder builder, int numElems) { builder.startVector(4, numElems, 4); }
public static void addOptional(FlatBufferBuilder builder, boolean optional) { builder.addBoolean(11, optional, false); }
public static void addPadding(FlatBufferBuilder builder, int padding) { builder.addShort(12, (short) padding, (short) 0); }
public static void addOffset64(FlatBufferBuilder builder, boolean offset64) { builder.addBoolean(13, offset64, false); }
public static int endField(FlatBufferBuilder builder) {
int o = builder.endTable();
builder.required(o, 4); // name

View File

@ -21,4 +21,5 @@ class BaseType(object):
Obj = 15
Union = 16
Array = 17
MaxBaseType = 18
Vector64 = 18
MaxBaseType = 19

View File

@ -155,8 +155,16 @@ class Field(object):
return self._tab.Get(flatbuffers.number_types.Uint16Flags, o + self._tab.Pos)
return 0
# If the field uses 64-bit offsets.
# Field
def Offset64(self):
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(30))
if o != 0:
return bool(self._tab.Get(flatbuffers.number_types.BoolFlags, o + self._tab.Pos))
return False
def FieldStart(builder):
builder.StartObject(13)
builder.StartObject(14)
def Start(builder):
FieldStart(builder)
@ -251,6 +259,12 @@ def FieldAddPadding(builder, padding):
def AddPadding(builder: flatbuffers.Builder, padding: int):
FieldAddPadding(builder, padding)
def FieldAddOffset64(builder, offset64):
builder.PrependBoolSlot(13, offset64, 0)
def AddOffset64(builder: flatbuffers.Builder, offset64: bool):
FieldAddOffset64(builder, offset64)
def FieldEnd(builder):
return builder.EndObject()

View File

@ -25,6 +25,7 @@ enum BaseType : byte {
Obj, // Used for tables & structs.
Union,
Array,
Vector64,
// Add any new type above this value.
MaxBaseType
@ -85,6 +86,8 @@ table Field {
optional:bool = false;
/// Number of padding octets to always add after this field. Structs only.
padding:uint16 = 0;
/// If the field uses 64-bit offsets.
offset64:bool = false;
}
table Object { // Used for both tables and structs.

View File

@ -1,6 +1,7 @@
#include "annotated_binary_text_gen.h"
#include <algorithm>
#include <cstdint>
#include <fstream>
#include <ostream>
#include <sstream>
@ -36,6 +37,7 @@ static std::string ToString(const BinarySectionType type) {
case BinarySectionType::Struct: return "struct";
case BinarySectionType::String: return "string";
case BinarySectionType::Vector: return "vector";
case BinarySectionType::Vector64: return "vector64";
case BinarySectionType::Unknown: return "unknown";
case BinarySectionType::Union: return "union";
case BinarySectionType::Padding: return "padding";
@ -44,7 +46,9 @@ static std::string ToString(const BinarySectionType type) {
}
static bool IsOffset(const BinaryRegionType type) {
return type == BinaryRegionType::UOffset || type == BinaryRegionType::SOffset;
return type == BinaryRegionType::UOffset ||
type == BinaryRegionType::SOffset ||
type == BinaryRegionType::UOffset64;
}
template<typename T> std::string ToString(T value) {
@ -119,6 +123,9 @@ static std::string ToValueString(const BinaryRegion &region,
case BinaryRegionType::UType: return ToValueString<uint8_t>(region, binary);
// Handle Offsets separately, incase they add additional details.
case BinaryRegionType::UOffset64:
s += ToValueString<uint64_t>(region, binary);
break;
case BinaryRegionType::UOffset:
s += ToValueString<uint32_t>(region, binary);
break;
@ -368,7 +375,8 @@ static void GenerateSection(std::ostream &os, const BinarySection &section,
// As a space saving measure, skip generating every vector element, just put
// the first and last elements in the output. Skip the whole thing if there
// are only three or fewer elements, as it doesn't save space.
if (section.type == BinarySectionType::Vector &&
if ((section.type == BinarySectionType::Vector ||
section.type == BinarySectionType::Vector64) &&
!output_config.include_vector_contents && section.regions.size() > 4) {
// Generate the length region which should be first.
GenerateRegion(os, section.regions[0], section, binary, output_config);

View File

@ -1,10 +1,13 @@
#include "binary_annotator.h"
#include <algorithm>
#include <cstdint>
#include <iostream>
#include <limits>
#include <string>
#include <vector>
#include "flatbuffers/base.h"
#include "flatbuffers/reflection.h"
#include "flatbuffers/util.h"
#include "flatbuffers/verifier.h"
@ -37,9 +40,9 @@ static BinaryRegion MakeBinaryRegion(
return region;
}
static BinarySection MakeBinarySection(
const std::string &name, const BinarySectionType type,
std::vector<BinaryRegion> regions) {
static BinarySection MakeBinarySection(const std::string &name,
const BinarySectionType type,
std::vector<BinaryRegion> regions) {
BinarySection section;
section.name = name;
section.type = type;
@ -118,12 +121,15 @@ static BinarySection GenerateMissingSection(const uint64_t offset,
std::map<uint64_t, BinarySection> BinaryAnnotator::Annotate() {
flatbuffers::Verifier verifier(bfbs_, static_cast<size_t>(bfbs_length_));
if (!reflection::VerifySchemaBuffer(verifier)) { return {}; }
if ((is_size_prefixed_ &&
!reflection::VerifySizePrefixedSchemaBuffer(verifier)) ||
!reflection::VerifySchemaBuffer(verifier)) {
return {};
}
// The binary is too short to read as a flatbuffers.
// TODO(dbaileychess): We could spit out the annotated buffer sections, but
// I'm not sure if it is worth it.
if (binary_length_ < 4) { return {}; }
if (binary_length_ < FLATBUFFERS_MIN_BUFFER_SIZE) { return {}; }
// Make sure we start with a clean slate.
vtables_.clear();
@ -151,7 +157,41 @@ std::map<uint64_t, BinarySection> BinaryAnnotator::Annotate() {
}
uint64_t BinaryAnnotator::BuildHeader(const uint64_t header_offset) {
const auto root_table_offset = ReadScalar<uint32_t>(header_offset);
uint64_t offset = header_offset;
std::vector<BinaryRegion> regions;
// If this binary is a size prefixed one, attempt to parse the size.
if (is_size_prefixed_) {
BinaryRegionComment prefix_length_comment;
prefix_length_comment.type = BinaryRegionCommentType::SizePrefix;
bool has_prefix_value = false;
const auto prefix_length = ReadScalar<uoffset64_t>(offset);
if (*prefix_length <= binary_length_) {
regions.push_back(MakeBinaryRegion(offset, sizeof(uoffset64_t),
BinaryRegionType::Uint64, 0, 0,
prefix_length_comment));
offset += sizeof(uoffset64_t);
has_prefix_value = true;
}
if (!has_prefix_value) {
const auto prefix_length = ReadScalar<uoffset_t>(offset);
if (*prefix_length <= binary_length_) {
regions.push_back(MakeBinaryRegion(offset, sizeof(uoffset_t),
BinaryRegionType::Uint32, 0, 0,
prefix_length_comment));
offset += sizeof(uoffset_t);
has_prefix_value = true;
}
}
if (!has_prefix_value) {
SetError(prefix_length_comment, BinaryRegionStatus::ERROR);
}
}
const auto root_table_offset = ReadScalar<uint32_t>(offset);
if (!root_table_offset.has_value()) {
// This shouldn't occur, since we validate the min size of the buffer
@ -159,22 +199,20 @@ uint64_t BinaryAnnotator::BuildHeader(const uint64_t header_offset) {
return std::numeric_limits<uint64_t>::max();
}
std::vector<BinaryRegion> regions;
uint64_t offset = header_offset;
// TODO(dbaileychess): sized prefixed value
const auto root_table_loc = offset + *root_table_offset;
BinaryRegionComment root_offset_comment;
root_offset_comment.type = BinaryRegionCommentType::RootTableOffset;
root_offset_comment.name = schema_->root_table()->name()->str();
if (!IsValidOffset(root_table_offset.value())) {
if (!IsValidOffset(root_table_loc)) {
SetError(root_offset_comment,
BinaryRegionStatus::ERROR_OFFSET_OUT_OF_BINARY);
}
regions.push_back(
MakeBinaryRegion(offset, sizeof(uint32_t), BinaryRegionType::UOffset, 0,
root_table_offset.value(), root_offset_comment));
regions.push_back(MakeBinaryRegion(offset, sizeof(uint32_t),
BinaryRegionType::UOffset, 0,
root_table_loc, root_offset_comment));
offset += sizeof(uint32_t);
if (IsValidRead(offset, flatbuffers::kFileIdentifierLength) &&
@ -193,7 +231,7 @@ uint64_t BinaryAnnotator::BuildHeader(const uint64_t header_offset) {
AddSection(header_offset, MakeBinarySection("", BinarySectionType::Header,
std::move(regions)));
return root_table_offset.value();
return root_table_loc;
}
BinaryAnnotator::VTable *BinaryAnnotator::GetOrBuildVTable(
@ -656,7 +694,18 @@ void BinaryAnnotator::BuildTable(const uint64_t table_offset,
}
// Read the offset
const auto offset_from_field = ReadScalar<uint32_t>(field_offset);
uint64_t offset = 0;
uint64_t length = sizeof(uint32_t);
BinaryRegionType region_type = BinaryRegionType::UOffset;
if (field->offset64()) {
length = sizeof(uint64_t);
region_type = BinaryRegionType::UOffset64;
offset = ReadScalar<uint64_t>(field_offset).value_or(0);
} else {
offset = ReadScalar<uint32_t>(field_offset).value_or(0);
}
// const auto offset_from_field = ReadScalar<uint32_t>(field_offset);
uint64_t offset_of_next_item = 0;
BinaryRegionComment offset_field_comment;
offset_field_comment.type = BinaryRegionCommentType::TableOffsetField;
@ -666,7 +715,7 @@ void BinaryAnnotator::BuildTable(const uint64_t table_offset,
// Validate any field that isn't inline (i.e., non-structs).
if (!IsInlineField(field)) {
if (!offset_from_field.has_value()) {
if (offset == 0) {
const uint64_t remaining = RemainingBytes(field_offset);
SetError(offset_field_comment,
@ -678,14 +727,14 @@ void BinaryAnnotator::BuildTable(const uint64_t table_offset,
continue;
}
offset_of_next_item = field_offset + offset_from_field.value();
offset_of_next_item = field_offset + offset;
if (!IsValidOffset(offset_of_next_item)) {
SetError(offset_field_comment,
BinaryRegionStatus::ERROR_OFFSET_OUT_OF_BINARY);
regions.push_back(MakeBinaryRegion(
field_offset, sizeof(uint32_t), BinaryRegionType::UOffset, 0,
offset_of_next_item, offset_field_comment));
regions.push_back(MakeBinaryRegion(field_offset, length, region_type, 0,
offset_of_next_item,
offset_field_comment));
continue;
}
}
@ -702,9 +751,9 @@ void BinaryAnnotator::BuildTable(const uint64_t table_offset,
} else {
offset_field_comment.default_value = "(table)";
regions.push_back(MakeBinaryRegion(
field_offset, sizeof(uint32_t), BinaryRegionType::UOffset, 0,
offset_of_next_item, offset_field_comment));
regions.push_back(MakeBinaryRegion(field_offset, length, region_type,
0, offset_of_next_item,
offset_field_comment));
BuildTable(offset_of_next_item, BinarySectionType::Table,
next_object);
@ -713,17 +762,25 @@ void BinaryAnnotator::BuildTable(const uint64_t table_offset,
case reflection::BaseType::String: {
offset_field_comment.default_value = "(string)";
regions.push_back(MakeBinaryRegion(
field_offset, sizeof(uint32_t), BinaryRegionType::UOffset, 0,
offset_of_next_item, offset_field_comment));
regions.push_back(MakeBinaryRegion(field_offset, length, region_type, 0,
offset_of_next_item,
offset_field_comment));
BuildString(offset_of_next_item, table, field);
} break;
case reflection::BaseType::Vector: {
offset_field_comment.default_value = "(vector)";
regions.push_back(MakeBinaryRegion(
field_offset, sizeof(uint32_t), BinaryRegionType::UOffset, 0,
offset_of_next_item, offset_field_comment));
regions.push_back(MakeBinaryRegion(field_offset, length, region_type, 0,
offset_of_next_item,
offset_field_comment));
BuildVector(offset_of_next_item, table, field, table_offset,
vtable->fields);
} break;
case reflection::BaseType::Vector64: {
offset_field_comment.default_value = "(vector64)";
regions.push_back(MakeBinaryRegion(field_offset, length, region_type, 0,
offset_of_next_item,
offset_field_comment));
BuildVector(offset_of_next_item, table, field, table_offset,
vtable->fields);
} break;
@ -768,8 +825,7 @@ void BinaryAnnotator::BuildTable(const uint64_t table_offset,
offset_field_comment.default_value =
"(union of type `" + enum_type + "`)";
regions.push_back(MakeBinaryRegion(field_offset, sizeof(uint32_t),
BinaryRegionType::UOffset, 0,
regions.push_back(MakeBinaryRegion(field_offset, length, region_type, 0,
union_offset, offset_field_comment));
} break;
@ -986,7 +1042,28 @@ void BinaryAnnotator::BuildVector(
BinaryRegionComment vector_length_comment;
vector_length_comment.type = BinaryRegionCommentType::VectorLength;
const auto vector_length = ReadScalar<uint32_t>(vector_offset);
const bool is_64_bit_vector =
field->type()->base_type() == reflection::BaseType::Vector64;
flatbuffers::Optional<uint64_t> vector_length;
uint32_t vector_length_size_type = 0;
BinaryRegionType region_type = BinaryRegionType::Uint32;
BinarySectionType section_type = BinarySectionType::Vector;
if (is_64_bit_vector) {
auto v = ReadScalar<uint64_t>(vector_offset);
if (v.has_value()) { vector_length = v.value(); }
vector_length_size_type = sizeof(uint64_t);
region_type = BinaryRegionType::Uint64;
section_type = BinarySectionType::Vector64;
} else {
auto v = ReadScalar<uint32_t>(vector_offset);
if (v.has_value()) { vector_length = v.value(); }
vector_length_size_type = sizeof(uint32_t);
region_type = BinaryRegionType::Uint32;
section_type = BinarySectionType::Vector;
}
if (!vector_length.has_value()) {
const uint64_t remaining = RemainingBytes(vector_offset);
SetError(vector_length_comment, BinaryRegionStatus::ERROR_INCOMPLETE_BINARY,
@ -1006,7 +1083,7 @@ void BinaryAnnotator::BuildVector(
// Validate there are enough bytes left in the binary to process all the
// items.
const uint64_t last_item_offset =
vector_offset + sizeof(uint32_t) +
vector_offset + vector_length_size_type +
vector_length.value() * GetElementSize(field);
if (!IsValidOffset(last_item_offset - 1)) {
@ -1016,20 +1093,18 @@ void BinaryAnnotator::BuildVector(
MakeSingleRegionBinarySection(
std::string(table->name()->c_str()) + "." + field->name()->c_str(),
BinarySectionType::Vector,
MakeBinaryRegion(vector_offset, sizeof(uint32_t),
BinaryRegionType::Uint32, 0, 0,
vector_length_comment)));
MakeBinaryRegion(vector_offset, vector_length_size_type,
region_type, 0, 0, vector_length_comment)));
return;
}
std::vector<BinaryRegion> regions;
regions.push_back(MakeBinaryRegion(vector_offset, sizeof(uint32_t),
BinaryRegionType::Uint32, 0, 0,
vector_length_comment));
regions.push_back(MakeBinaryRegion(vector_offset, vector_length_size_type,
region_type, 0, 0, vector_length_comment));
// Consume the vector length offset.
uint64_t offset = vector_offset + sizeof(uint32_t);
uint64_t offset = vector_offset + vector_length_size_type;
switch (field->type()->element()) {
case reflection::BaseType::Obj: {
@ -1302,7 +1377,7 @@ void BinaryAnnotator::BuildVector(
AddSection(vector_offset,
MakeBinarySection(std::string(table->name()->c_str()) + "." +
field->name()->c_str(),
BinarySectionType::Vector, std::move(regions)));
section_type, std::move(regions)));
}
std::string BinaryAnnotator::BuildUnion(const uint64_t union_offset,

View File

@ -48,6 +48,7 @@ enum class BinaryRegionType {
Float = 15,
Double = 16,
UType = 17,
UOffset64 = 18,
};
template<typename T>
@ -179,6 +180,7 @@ enum class BinarySectionType {
Vector = 7,
Union = 8,
Padding = 9,
Vector64 = 10,
};
// A section of the binary that is grouped together in some logical manner, and
@ -216,6 +218,7 @@ inline static BinaryRegionType GetRegionType(reflection::BaseType base_type) {
inline static std::string ToString(const BinaryRegionType type) {
switch (type) {
case BinaryRegionType::UOffset: return "UOffset32";
case BinaryRegionType::UOffset64: return "UOffset64";
case BinaryRegionType::SOffset: return "SOffset32";
case BinaryRegionType::VOffset: return "VOffset16";
case BinaryRegionType::Bool: return "bool";
@ -242,12 +245,14 @@ class BinaryAnnotator {
explicit BinaryAnnotator(const uint8_t *const bfbs,
const uint64_t bfbs_length,
const uint8_t *const binary,
const uint64_t binary_length)
const uint64_t binary_length,
const bool is_size_prefixed)
: bfbs_(bfbs),
bfbs_length_(bfbs_length),
schema_(reflection::GetSchema(bfbs)),
binary_(binary),
binary_length_(binary_length) {}
binary_length_(binary_length),
is_size_prefixed_(is_size_prefixed) {}
std::map<uint64_t, BinarySection> Annotate();
@ -387,6 +392,7 @@ class BinaryAnnotator {
// The binary data itself.
const uint8_t *binary_;
const uint64_t binary_length_;
const bool is_size_prefixed_;
// Map of binary offset to vtables, to dedupe vtables.
std::map<uint64_t, std::list<VTable>> vtables_;

View File

@ -252,10 +252,9 @@ const static FlatCOption flatc_options[] = {
"Currently this is required to generate private types in Rust" },
{ "", "python-no-type-prefix-suffix", "",
"Skip emission of Python functions that are prefixed with typenames" },
{ "", "python-typing", "",
"Generate Python type annotations" },
{ "", "python-typing", "", "Generate Python type annotations" },
{ "", "file-names-only", "",
"Print out generated file names without writing to the files"},
"Print out generated file names without writing to the files" },
};
auto cmp = [](FlatCOption a, FlatCOption b) { return a.long_opt < b.long_opt; };
@ -394,9 +393,11 @@ void FlatCompiler::AnnotateBinaries(const uint8_t *binary_schema,
const uint8_t *binary =
reinterpret_cast<const uint8_t *>(binary_contents.c_str());
const size_t binary_size = binary_contents.size();
const bool is_size_prefixed = options.opts.size_prefixed;
flatbuffers::BinaryAnnotator binary_annotator(
binary_schema, binary_schema_size, binary, binary_size);
binary_schema, binary_schema_size, binary, binary_size,
is_size_prefixed);
auto annotations = binary_annotator.Annotate();
@ -663,7 +664,7 @@ FlatCOptions FlatCompiler::ParseFromCommandLineArguments(int argc,
} else if (arg == "--annotate") {
if (++argi >= argc) Error("missing path following: " + arg, true);
options.annotate_schema = flatbuffers::PosixPath(argv[argi]);
} else if(arg == "--file-names-only") {
} else if (arg == "--file-names-only") {
// TODO (khhn): Provide 2 implementation
options.file_names_only = true;
} else {

View File

@ -77,8 +77,7 @@ static std::string GenIncludeGuard(const std::string &file_name,
static bool IsVectorOfPointers(const FieldDef &field) {
const auto &type = field.value.type;
const auto &vector_type = type.VectorType();
return type.base_type == BASE_TYPE_VECTOR &&
vector_type.base_type == BASE_TYPE_STRUCT &&
return IsVector(type) && vector_type.base_type == BASE_TYPE_STRUCT &&
!vector_type.struct_def->fixed && !field.native_inline;
}
@ -107,6 +106,21 @@ struct IDLOptionsCpp : public IDLOptions {
: IDLOptions(opts), g_cpp_std(CPP_STD_11), g_only_fixed_enums(true) {}
};
// Iterates over all the fields of the object first by Offset type (Offset64
// before Offset32) and then by definition order.
static void ForAllFieldsOrderedByOffset(
const StructDef &object, std::function<void(const FieldDef *field)> func) {
// Loop over all the fields and call the func on all offset64 fields.
for (const FieldDef *field_def : object.fields.vec) {
if (field_def->offset64) { func(field_def); }
}
// Loop over all the fields a second time and call the func on all offset
// fields.
for (const FieldDef *field_def : object.fields.vec) {
if (!field_def->offset64) { func(field_def); }
}
}
class CppGenerator : public BaseGenerator {
public:
CppGenerator(const Parser &parser, const std::string &path,
@ -273,6 +287,25 @@ class CppGenerator : public BaseGenerator {
}
}
void MarkIf64BitBuilderIsNeeded() {
if (needs_64_bit_builder_) { return; }
for (auto t : parser_.structs_.vec) {
if (t == nullptr) continue;
for (auto f : t->fields.vec) {
if (f == nullptr) continue;
if (f->offset64) {
needs_64_bit_builder_ = true;
break;
}
}
}
}
std::string GetBuilder() {
return std::string("::flatbuffers::FlatBufferBuilder") +
(needs_64_bit_builder_ ? "64" : "");
}
void GenExtraIncludes() {
for (const std::string &cpp_include : opts_.cpp_includes) {
code_ += "#include \"" + cpp_include + "\"";
@ -396,6 +429,9 @@ class CppGenerator : public BaseGenerator {
// Iterate through all definitions we haven't generate code for (enums,
// structs, and tables) and output them to a single file.
bool generate() {
// Check if we require a 64-bit flatbuffer builder.
MarkIf64BitBuilderIsNeeded();
code_.Clear();
code_ += "// " + std::string(FlatBuffersGeneratedWarning()) + "\n\n";
@ -530,6 +566,8 @@ class CppGenerator : public BaseGenerator {
code_.SetValue("STRUCT_NAME", name);
code_.SetValue("CPP_NAME", cpp_name);
code_.SetValue("NULLABLE_EXT", NullableExtension());
code_.SetValue(
"SIZE_T", needs_64_bit_builder_ ? ",::flatbuffers::uoffset64_t" : "");
// The root datatype accessor:
code_ += "inline \\";
@ -546,7 +584,8 @@ class CppGenerator : public BaseGenerator {
"*{{NULLABLE_EXT}}GetSizePrefixed{{STRUCT_NAME}}(const void "
"*buf) {";
code_ +=
" return ::flatbuffers::GetSizePrefixedRoot<{{CPP_NAME}}>(buf);";
" return "
"::flatbuffers::GetSizePrefixedRoot<{{CPP_NAME}}{{SIZE_T}}>(buf);";
code_ += "}";
code_ += "";
@ -565,7 +604,8 @@ class CppGenerator : public BaseGenerator {
"*buf) {";
code_ +=
" return "
"::flatbuffers::GetMutableSizePrefixedRoot<{{CPP_NAME}}>(buf);";
"::flatbuffers::GetMutableSizePrefixedRoot<{{CPP_NAME}}{{SIZE_T}}>("
"buf);";
code_ += "}";
code_ += "";
}
@ -612,7 +652,8 @@ class CppGenerator : public BaseGenerator {
code_ += "inline bool VerifySizePrefixed{{STRUCT_NAME}}Buffer(";
code_ += " ::flatbuffers::Verifier &verifier) {";
code_ +=
" return verifier.VerifySizePrefixedBuffer<{{CPP_NAME}}>({{ID}});";
" return "
"verifier.VerifySizePrefixedBuffer<{{CPP_NAME}}{{SIZE_T}}>({{ID}});";
code_ += "}";
code_ += "";
@ -626,7 +667,7 @@ class CppGenerator : public BaseGenerator {
// Finish a buffer with a given root object:
code_ += "inline void Finish{{STRUCT_NAME}}Buffer(";
code_ += " ::flatbuffers::FlatBufferBuilder &fbb,";
code_ += " " + GetBuilder() + " &fbb,";
code_ += " ::flatbuffers::Offset<{{CPP_NAME}}> root) {";
if (parser_.file_identifier_.length())
code_ += " fbb.Finish(root, {{STRUCT_NAME}}Identifier());";
@ -636,7 +677,7 @@ class CppGenerator : public BaseGenerator {
code_ += "";
code_ += "inline void FinishSizePrefixed{{STRUCT_NAME}}Buffer(";
code_ += " ::flatbuffers::FlatBufferBuilder &fbb,";
code_ += " " + GetBuilder() + " &fbb,";
code_ += " ::flatbuffers::Offset<{{CPP_NAME}}> root) {";
if (parser_.file_identifier_.length())
code_ += " fbb.FinishSizePrefixed(root, {{STRUCT_NAME}}Identifier());";
@ -696,6 +737,7 @@ class CppGenerator : public BaseGenerator {
const IDLOptionsCpp opts_;
const TypedFloatConstantGenerator float_const_gen_;
bool needs_64_bit_builder_ = false;
const Namespace *CurrentNameSpace() const { return cur_name_space_; }
@ -747,10 +789,14 @@ class CppGenerator : public BaseGenerator {
case BASE_TYPE_STRING: {
return "::flatbuffers::String";
}
case BASE_TYPE_VECTOR64:
case BASE_TYPE_VECTOR: {
const auto type_name = GenTypeWire(
type.VectorType(), "", VectorElementUserFacing(type.VectorType()));
return "::flatbuffers::Vector<" + type_name + ">";
return "::flatbuffers::Vector" +
std::string((type.base_type == BASE_TYPE_VECTOR64) ? "64<"
: "<") +
type_name + ">";
}
case BASE_TYPE_STRUCT: {
return WrapInNameSpace(*type.struct_def);
@ -766,13 +812,15 @@ class CppGenerator : public BaseGenerator {
// Return a C++ type for any type (scalar/pointer) specifically for
// building a flatbuffer.
std::string GenTypeWire(const Type &type, const char *postfix,
bool user_facing_type) const {
bool user_facing_type,
bool _64_bit_offset = false) const {
if (IsScalar(type.base_type)) {
return GenTypeBasic(type, user_facing_type) + postfix;
} else if (IsStruct(type)) {
return "const " + GenTypePointer(type) + " *";
} else {
return "::flatbuffers::Offset<" + GenTypePointer(type) + ">" + postfix;
return "::flatbuffers::Offset" + std::string(_64_bit_offset ? "64" : "") +
"<" + GenTypePointer(type) + ">" + postfix;
}
}
@ -858,6 +906,7 @@ class CppGenerator : public BaseGenerator {
case BASE_TYPE_STRING: {
return NativeString(&field);
}
case BASE_TYPE_VECTOR64:
case BASE_TYPE_VECTOR: {
const auto type_name = GenTypeNative(type.VectorType(), true, field);
if (type.struct_def &&
@ -866,8 +915,9 @@ class CppGenerator : public BaseGenerator {
type.struct_def->attributes.Lookup("native_custom_alloc");
return "std::vector<" + type_name + "," +
native_custom_alloc->constant + "<" + type_name + ">>";
} else
} else {
return "std::vector<" + type_name + ">";
}
}
case BASE_TYPE_STRUCT: {
auto type_name = WrapInNameSpace(*type.struct_def);
@ -1015,8 +1065,8 @@ class CppGenerator : public BaseGenerator {
std::string UnionPackSignature(const EnumDef &enum_def, bool inclass) {
return "::flatbuffers::Offset<void> " +
(inclass ? "" : Name(enum_def) + "Union::") +
"Pack(::flatbuffers::FlatBufferBuilder &_fbb, " +
(inclass ? "" : Name(enum_def) + "Union::") + "Pack(" +
GetBuilder() + " &_fbb, " +
"const ::flatbuffers::rehasher_function_t *_rehasher" +
(inclass ? " = nullptr" : "") + ") const";
}
@ -1024,8 +1074,7 @@ class CppGenerator : public BaseGenerator {
std::string TableCreateSignature(const StructDef &struct_def, bool predecl,
const IDLOptions &opts) {
return "::flatbuffers::Offset<" + Name(struct_def) + "> Create" +
Name(struct_def) +
"(::flatbuffers::FlatBufferBuilder &_fbb, const " +
Name(struct_def) + "(" + GetBuilder() + " &_fbb, const " +
NativeName(Name(struct_def), &struct_def, opts) +
" *_o, const ::flatbuffers::rehasher_function_t *_rehasher" +
(predecl ? " = nullptr" : "") + ")";
@ -1035,7 +1084,7 @@ class CppGenerator : public BaseGenerator {
const IDLOptions &opts) {
return std::string(inclass ? "static " : "") + "::flatbuffers::Offset<" +
Name(struct_def) + "> " + (inclass ? "" : Name(struct_def) + "::") +
"Pack(::flatbuffers::FlatBufferBuilder &_fbb, " + "const " +
"Pack(" + GetBuilder() + " &_fbb, " + "const " +
NativeName(Name(struct_def), &struct_def, opts) + "* _o, " +
"const ::flatbuffers::rehasher_function_t *_rehasher" +
(inclass ? " = nullptr" : "") + ")";
@ -1791,7 +1840,8 @@ class CppGenerator : public BaseGenerator {
if (IsStruct(vtype)) {
type = WrapInNameSpace(*vtype.struct_def);
} else {
type = GenTypeWire(vtype, "", VectorElementUserFacing(vtype));
type = GenTypeWire(vtype, "", VectorElementUserFacing(vtype),
field.offset64);
}
if (TypeHasKey(vtype)) {
code_.SetValue("PARAM_TYPE", "std::vector<" + type + "> *");
@ -1805,7 +1855,8 @@ class CppGenerator : public BaseGenerator {
if (field.IsScalarOptional())
code_.SetValue("PARAM_TYPE", GenOptionalDecl(type) + " ");
else
code_.SetValue("PARAM_TYPE", GenTypeWire(type, " ", true));
code_.SetValue("PARAM_TYPE",
GenTypeWire(type, " ", true, field.offset64));
}
code_ += "{{PRE}}{{PARAM_TYPE}}{{PARAM_NAME}} = {{PARAM_VALUE}}\\";
}
@ -1814,7 +1865,7 @@ class CppGenerator : public BaseGenerator {
void GenMember(const FieldDef &field) {
if (!field.deprecated && // Deprecated fields won't be accessible.
field.value.type.base_type != BASE_TYPE_UTYPE &&
(field.value.type.base_type != BASE_TYPE_VECTOR ||
(!IsVector(field.value.type) ||
field.value.type.element != BASE_TYPE_UTYPE)) {
auto type = GenTypeNative(field.value.type, false, field);
auto cpp_type = field.attributes.Lookup("cpp_type");
@ -1918,7 +1969,7 @@ class CppGenerator : public BaseGenerator {
Name(field) + "(" + native_default->constant + ")";
}
}
} else if (cpp_type && field.value.type.base_type != BASE_TYPE_VECTOR) {
} else if (cpp_type && !IsVector(field.value.type)) {
if (!initializer_list.empty()) { initializer_list += ",\n "; }
initializer_list += Name(field) + "(0)";
}
@ -2063,7 +2114,7 @@ class CppGenerator : public BaseGenerator {
const auto rhs_accessor = "rhs." + accessor;
if (!field.deprecated && // Deprecated fields won't be accessible.
field.value.type.base_type != BASE_TYPE_UTYPE &&
(field.value.type.base_type != BASE_TYPE_VECTOR ||
(!IsVector(field.value.type) ||
field.value.type.element != BASE_TYPE_UTYPE)) {
if (!compare_op.empty()) { compare_op += " &&\n "; }
if (struct_def.fixed || field.native_inline ||
@ -2195,7 +2246,10 @@ class CppGenerator : public BaseGenerator {
"{{PRE}}VerifyField{{REQUIRED}}<{{SIZE}}>(verifier, "
"{{OFFSET}}, {{ALIGN}})\\";
} else {
code_ += "{{PRE}}VerifyOffset{{REQUIRED}}(verifier, {{OFFSET}})\\";
code_.SetValue("OFFSET_SIZE", field.offset64 ? "64" : "");
code_ +=
"{{PRE}}VerifyOffset{{OFFSET_SIZE}}{{REQUIRED}}(verifier, "
"{{OFFSET}})\\";
}
switch (field.value.type.base_type) {
@ -2217,6 +2271,7 @@ class CppGenerator : public BaseGenerator {
code_ += "{{PRE}}verifier.VerifyString({{NAME}}())\\";
break;
}
case BASE_TYPE_VECTOR64:
case BASE_TYPE_VECTOR: {
code_ += "{{PRE}}verifier.VerifyVector({{NAME}}())\\";
@ -2468,12 +2523,18 @@ class CppGenerator : public BaseGenerator {
if (!field.IsScalarOptional()) {
const bool is_scalar = IsScalar(type.base_type);
std::string accessor;
if (is_scalar)
std::string offset_size = "";
if (is_scalar) {
accessor = "GetField<";
else if (IsStruct(type))
} else if (IsStruct(type)) {
accessor = "GetStruct<";
else
accessor = "GetPointer<";
} else {
if (field.offset64) {
accessor = "GetPointer64<";
} else {
accessor = "GetPointer<";
}
}
auto offset_type = GenTypeGet(type, "", "const ", " *", false);
auto call = accessor + offset_type + ">(" + offset_str;
// Default value as second arg for non-pointer types.
@ -2633,7 +2694,7 @@ class CppGenerator : public BaseGenerator {
auto offset_str = GenFieldOffsetName(field);
if (is_scalar) {
const auto wire_type = GenTypeWire(type, "", false);
const auto wire_type = GenTypeWire(type, "", false, field.offset64);
code_.SetValue("SET_FN", "SetField<" + wire_type + ">");
code_.SetValue("OFFSET_NAME", offset_str);
code_.SetValue("FIELD_TYPE", GenTypeBasic(type, true));
@ -2665,7 +2726,11 @@ class CppGenerator : public BaseGenerator {
} else {
auto postptr = " *" + NullableExtension();
auto wire_type = GenTypeGet(type, " ", "", postptr.c_str(), true);
std::string accessor = IsStruct(type) ? "GetStruct<" : "GetPointer<";
const std::string accessor = [&]() {
if (IsStruct(type)) { return "GetStruct<"; }
if (field.offset64) { return "GetPointer64<"; }
return "GetPointer<";
}();
auto underlying = accessor + wire_type + ">(" + offset_str + ")";
code_.SetValue("FIELD_TYPE", wire_type);
code_.SetValue("FIELD_VALUE", GenUnderlyingCast(field, true, underlying));
@ -2859,9 +2924,9 @@ class CppGenerator : public BaseGenerator {
// Generate code to do force_align for the vector.
if (align > 1) {
const auto vtype = field.value.type.VectorType();
const std::string &type = IsStruct(vtype)
? WrapInNameSpace(*vtype.struct_def)
: GenTypeWire(vtype, "", false);
const std::string &type =
IsStruct(vtype) ? WrapInNameSpace(*vtype.struct_def)
: GenTypeWire(vtype, "", false, field.offset64);
return "_fbb.ForceVectorAlignment(" + field_size + ", sizeof(" + type +
"), " + std::to_string(static_cast<long long>(align)) + ");";
}
@ -2874,7 +2939,7 @@ class CppGenerator : public BaseGenerator {
// Generate a builder struct:
code_ += "struct {{STRUCT_NAME}}Builder {";
code_ += " typedef {{STRUCT_NAME}} Table;";
code_ += " ::flatbuffers::FlatBufferBuilder &fbb_;";
code_ += " " + GetBuilder() + " &fbb_;";
code_ += " ::flatbuffers::uoffset_t start_;";
bool has_string_or_vector_fields = false;
@ -2897,12 +2962,14 @@ class CppGenerator : public BaseGenerator {
// fbb_.AddElement<type>(offset, name, default);
// }
code_.SetValue("FIELD_NAME", Name(field));
code_.SetValue("FIELD_TYPE", GenTypeWire(field.value.type, " ", true));
code_.SetValue("FIELD_TYPE",
GenTypeWire(field.value.type, " ", true, field.offset64));
code_.SetValue("ADD_OFFSET", Name(struct_def) + "::" + offset);
code_.SetValue("ADD_NAME", name);
code_.SetValue("ADD_VALUE", value);
if (is_scalar) {
const auto type = GenTypeWire(field.value.type, "", false);
const auto type =
GenTypeWire(field.value.type, "", false, field.offset64);
code_.SetValue("ADD_FN", "AddElement<" + type + ">");
} else if (IsStruct(field.value.type)) {
code_.SetValue("ADD_FN", "AddStruct");
@ -2921,9 +2988,9 @@ class CppGenerator : public BaseGenerator {
}
// Builder constructor
code_ +=
" explicit {{STRUCT_NAME}}Builder(::flatbuffers::FlatBufferBuilder "
"&_fbb)";
code_ += " explicit {{STRUCT_NAME}}Builder(" + GetBuilder() +
" "
"&_fbb)";
code_ += " : fbb_(_fbb) {";
code_ += " start_ = fbb_.StartTable();";
code_ += " }";
@ -2950,7 +3017,7 @@ class CppGenerator : public BaseGenerator {
code_ +=
"inline ::flatbuffers::Offset<{{STRUCT_NAME}}> "
"Create{{STRUCT_NAME}}(";
code_ += " ::flatbuffers::FlatBufferBuilder &_fbb\\";
code_ += " " + GetBuilder() + " &_fbb\\";
for (const auto &field : struct_def.fields.vec) {
if (!field->deprecated) { GenParam(*field, false, ",\n "); }
}
@ -2988,7 +3055,7 @@ class CppGenerator : public BaseGenerator {
code_ +=
"inline ::flatbuffers::Offset<{{STRUCT_NAME}}> "
"Create{{STRUCT_NAME}}Direct(";
code_ += " ::flatbuffers::FlatBufferBuilder &_fbb\\";
code_ += " " + GetBuilder() + " &_fbb\\";
for (const auto &field : struct_def.fields.vec) {
if (!field->deprecated) { GenParam(*field, true, ",\n "); }
}
@ -2997,54 +3064,85 @@ class CppGenerator : public BaseGenerator {
struct_def.defined_namespace->GetFullyQualifiedName("Create");
code_.SetValue("CREATE_NAME", TranslateNameSpace(qualified_create_name));
code_ += ") {";
for (const auto &field : struct_def.fields.vec) {
if (!field->deprecated) {
code_.SetValue("FIELD_NAME", Name(*field));
if (IsString(field->value.type)) {
if (!field->shared) {
code_.SetValue("CREATE_STRING", "CreateString");
} else {
code_.SetValue("CREATE_STRING", "CreateSharedString");
}
code_ +=
" auto {{FIELD_NAME}}__ = {{FIELD_NAME}} ? "
"_fbb.{{CREATE_STRING}}({{FIELD_NAME}}) : 0;";
} else if (IsVector(field->value.type)) {
const std::string force_align_code =
GenVectorForceAlign(*field, Name(*field) + "->size()");
if (!force_align_code.empty()) {
code_ += " if ({{FIELD_NAME}}) { " + force_align_code + " }";
}
code_ += " auto {{FIELD_NAME}}__ = {{FIELD_NAME}} ? \\";
const auto vtype = field->value.type.VectorType();
const auto has_key = TypeHasKey(vtype);
if (IsStruct(vtype)) {
const auto type = WrapInNameSpace(*vtype.struct_def);
code_ += (has_key ? "_fbb.CreateVectorOfSortedStructs<"
: "_fbb.CreateVectorOfStructs<") +
type + ">\\";
} else if (has_key) {
const auto type = WrapInNameSpace(*vtype.struct_def);
code_ += "_fbb.CreateVectorOfSortedTables<" + type + ">\\";
} else {
const auto type =
GenTypeWire(vtype, "", VectorElementUserFacing(vtype));
code_ += "_fbb.CreateVector<" + type + ">\\";
}
code_ +=
has_key ? "({{FIELD_NAME}}) : 0;" : "(*{{FIELD_NAME}}) : 0;";
// Offset64 bit fields need to be added to the buffer first, so here we
// loop over the fields in order of their offset size, followed by their
// definition order. Otherwise the emitted code might add a Offset
// followed by an Offset64 which would trigger an assertion.
// TODO(derekbailey): maybe optimize for the case where there is no
// 64offsets in the whole schema?
ForAllFieldsOrderedByOffset(struct_def, [&](const FieldDef *field) {
if (field->deprecated) { return; }
code_.SetValue("FIELD_NAME", Name(*field));
if (IsString(field->value.type)) {
if (!field->shared) {
code_.SetValue(
"CREATE_STRING",
"CreateString" + std::string(field->offset64
? "<::flatbuffers::Offset64>"
: ""));
} else {
code_.SetValue("CREATE_STRING", "CreateSharedString");
}
code_ +=
" auto {{FIELD_NAME}}__ = {{FIELD_NAME}} ? "
"_fbb.{{CREATE_STRING}}({{FIELD_NAME}}) : 0;";
} else if (IsVector(field->value.type)) {
const std::string force_align_code =
GenVectorForceAlign(*field, Name(*field) + "->size()");
if (!force_align_code.empty()) {
code_ += " if ({{FIELD_NAME}}) { " + force_align_code + " }";
}
code_ += " auto {{FIELD_NAME}}__ = {{FIELD_NAME}} ? \\";
const auto vtype = field->value.type.VectorType();
const auto has_key = TypeHasKey(vtype);
if (IsStruct(vtype)) {
const std::string type = WrapInNameSpace(*vtype.struct_def);
if (has_key) {
code_ += "_fbb.CreateVectorOfSortedStructs<" + type + ">\\";
} else {
// If the field uses 64-bit addressing, create a 64-bit vector.
if (field->value.type.base_type == BASE_TYPE_VECTOR64) {
code_ += "_fbb.CreateVectorOfStructs64\\";
} else {
code_ += "_fbb.CreateVectorOfStructs\\";
if (field->offset64) {
// This is normal 32-bit vector, with 64-bit addressing.
code_ += "64<::flatbuffers::Vector>\\";
} else {
code_ += "<" + type + ">\\";
}
}
}
} else if (has_key) {
const auto type = WrapInNameSpace(*vtype.struct_def);
code_ += "_fbb.CreateVectorOfSortedTables<" + type + ">\\";
} else {
const auto type = GenTypeWire(
vtype, "", VectorElementUserFacing(vtype), field->offset64);
if (field->value.type.base_type == BASE_TYPE_VECTOR64) {
code_ += "_fbb.CreateVector64\\";
} else {
// If the field uses 64-bit addressing, create a 64-bit vector.
code_.SetValue("64OFFSET", field->offset64 ? "64" : "");
code_.SetValue("TYPE",
field->offset64 ? "::flatbuffers::Vector" : type);
code_ += "_fbb.CreateVector{{64OFFSET}}<{{TYPE}}>\\";
}
}
code_ += has_key ? "({{FIELD_NAME}}) : 0;" : "(*{{FIELD_NAME}}) : 0;";
}
}
});
code_ += " return {{CREATE_NAME}}{{STRUCT_NAME}}(";
code_ += " _fbb\\";
for (const auto &field : struct_def.fields.vec) {
if (!field->deprecated) {
code_.SetValue("FIELD_NAME", Name(*field));
code_ += ",\n {{FIELD_NAME}}\\";
if (IsString(field->value.type) || IsVector(field->value.type)) {
code_ += "__\\";
}
if (field->deprecated) { continue; }
code_.SetValue("FIELD_NAME", Name(*field));
code_ += ",\n {{FIELD_NAME}}\\";
if (IsString(field->value.type) || IsVector(field->value.type)) {
code_ += "__\\";
}
}
code_ += ");";
@ -3115,6 +3213,7 @@ class CppGenerator : public BaseGenerator {
const FieldDef *union_field) {
std::string code;
switch (field.value.type.base_type) {
case BASE_TYPE_VECTOR64:
case BASE_TYPE_VECTOR: {
auto name = Name(field);
if (field.value.type.element == BASE_TYPE_UTYPE) {
@ -3151,8 +3250,11 @@ class CppGenerator : public BaseGenerator {
? ".type"
: (field.value.type.element == BASE_TYPE_UNION ? ".value"
: "");
code += "for (::flatbuffers::uoffset_t _i = 0;";
if (field.value.type.base_type == BASE_TYPE_VECTOR64) {
code += "for (::flatbuffers::uoffset64_t _i = 0;";
} else {
code += "for (::flatbuffers::uoffset_t _i = 0;";
}
code += " _i < _e->size(); _i++) { ";
auto cpp_type = field.attributes.Lookup("cpp_type");
if (cpp_type) {
@ -3265,8 +3367,7 @@ class CppGenerator : public BaseGenerator {
} else {
value += Name(field);
}
if (field.value.type.base_type != BASE_TYPE_VECTOR &&
field.attributes.Lookup("cpp_type")) {
if (!IsVector(field.value.type) && field.attributes.Lookup("cpp_type")) {
auto type = GenTypeBasic(field.value.type, false);
value =
"_rehasher ? "
@ -3282,7 +3383,10 @@ class CppGenerator : public BaseGenerator {
// _fbb.CreateSharedString(_o->field)
case BASE_TYPE_STRING: {
if (!field.shared) {
code += "_fbb.CreateString(";
code +=
"_fbb.CreateString" +
std::string(field.offset64 ? "<::flatbuffers::Offset64>" : "") +
"(";
} else {
code += "_fbb.CreateSharedString(";
}
@ -3309,6 +3413,7 @@ class CppGenerator : public BaseGenerator {
// _fbb.CreateVector<Offset<T>>(_o->field.size() [&](size_t i) {
// return CreateT(_fbb, _o->Get(i), rehasher);
// });
case BASE_TYPE_VECTOR64:
case BASE_TYPE_VECTOR: {
auto vector_type = field.value.type.VectorType();
switch (vector_type.base_type) {
@ -3347,7 +3452,16 @@ class CppGenerator : public BaseGenerator {
}
code += ")";
} else {
code += "_fbb.CreateVectorOfStructs";
// If the field uses 64-bit addressing, create a 64-bit vector.
if (field.value.type.base_type == BASE_TYPE_VECTOR64) {
code += "_fbb.CreateVectorOfStructs64";
} else {
code += "_fbb.CreateVectorOfStructs";
if (field.offset64) {
// This is normal 32-bit vector, with 64-bit addressing.
code += "64<::flatbuffers::Vector>";
}
}
code += "(" + value + ")";
}
} else {
@ -3413,7 +3527,17 @@ class CppGenerator : public BaseGenerator {
code += "(__va->_" + value + "[i]" + GenPtrGet(field) + ")) : 0";
code += "; }, &_va )";
} else {
code += "_fbb.CreateVector(" + value + ")";
// If the field uses 64-bit addressing, create a 64-bit vector.
if (field.value.type.base_type == BASE_TYPE_VECTOR64) {
code += "_fbb.CreateVector64(" + value + ")";
} else {
code += "_fbb.CreateVector";
if (field.offset64) {
// This is normal 32-bit vector, with 64-bit addressing.
code += "64<::flatbuffers::Vector>";
}
code += "(" + value + ")";
}
}
break;
}
@ -3540,7 +3664,9 @@ class CppGenerator : public BaseGenerator {
code_ +=
" struct _VectorArgs "
"{ ::flatbuffers::FlatBufferBuilder *__fbb; "
"{ " +
GetBuilder() +
" *__fbb; "
"const " +
NativeName(Name(struct_def), &struct_def, opts_) +
"* __o; "

View File

@ -19,6 +19,7 @@
#include <algorithm>
#include "flatbuffers/base.h"
#include "flatbuffers/code_generator.h"
#include "flatbuffers/flatbuffers.h"
#include "flatbuffers/flexbuffers.h"
@ -101,13 +102,13 @@ struct JsonPrinter {
// Print a vector or an array of JSON values, comma seperated, wrapped in
// "[]".
template<typename Container>
const char *PrintContainer(PrintScalarTag, const Container &c, size_t size,
template<typename Container, typename SizeT = typename Container::size_type>
const char *PrintContainer(PrintScalarTag, const Container &c, SizeT size,
const Type &type, int indent, const uint8_t *) {
const auto elem_indent = indent + Indent();
text += '[';
AddNewLine();
for (uoffset_t i = 0; i < size; i++) {
for (SizeT i = 0; i < size; i++) {
if (i) {
AddComma();
AddNewLine();
@ -123,14 +124,14 @@ struct JsonPrinter {
// Print a vector or an array of JSON values, comma seperated, wrapped in
// "[]".
template<typename Container>
const char *PrintContainer(PrintPointerTag, const Container &c, size_t size,
template<typename Container, typename SizeT = typename Container::size_type>
const char *PrintContainer(PrintPointerTag, const Container &c, SizeT size,
const Type &type, int indent, const uint8_t *prev_val) {
const auto is_struct = IsStruct(type);
const auto elem_indent = indent + Indent();
text += '[';
AddNewLine();
for (uoffset_t i = 0; i < size; i++) {
for (SizeT i = 0; i < size; i++) {
if (i) {
AddComma();
AddNewLine();
@ -149,10 +150,10 @@ struct JsonPrinter {
return nullptr;
}
template<typename T>
template<typename T, typename SizeT = uoffset_t>
const char *PrintVector(const void *val, const Type &type, int indent,
const uint8_t *prev_val) {
typedef Vector<T> Container;
typedef Vector<T, SizeT> Container;
typedef typename PrintTag<typename Container::return_type>::type tag;
auto &vec = *reinterpret_cast<const Container *>(val);
return PrintContainer<Container>(tag(), vec, vec.size(), type, indent,
@ -161,8 +162,9 @@ struct JsonPrinter {
// Print an array a sequence of JSON values, comma separated, wrapped in "[]".
template<typename T>
const char *PrintArray(const void *val, size_t size, const Type &type,
int indent) {
const char *PrintArray(const void *val, uint16_t size, const Type &type,
int indent) {
typedef Array<T, 0xFFFF> Container;
typedef typename PrintTag<typename Container::return_type>::type tag;
auto &arr = *reinterpret_cast<const Container *>(val);
@ -240,7 +242,7 @@ struct JsonPrinter {
}
template<typename T> static T GetFieldDefault(const FieldDef &fd) {
T val;
T val{};
auto check = StringToNumber(fd.value.constant.c_str(), &val);
(void)check;
FLATBUFFERS_ASSERT(check);

View File

@ -16,12 +16,15 @@
#include <algorithm>
#include <cmath>
#include <iostream>
#include <list>
#include <string>
#include <utility>
#include "flatbuffers/base.h"
#include "flatbuffers/buffer.h"
#include "flatbuffers/idl.h"
#include "flatbuffers/reflection_generated.h"
#include "flatbuffers/util.h"
namespace flatbuffers {
@ -42,7 +45,8 @@ static const double kPi = 3.14159265358979323846;
// The enums in the reflection schema should match the ones we use internally.
// Compare the last element to check if these go out of sync.
static_assert(BASE_TYPE_UNION == static_cast<BaseType>(reflection::Union),
static_assert(BASE_TYPE_VECTOR64 ==
static_cast<BaseType>(reflection::MaxBaseType - 1),
"enums don't match");
// Any parsing calls have to be wrapped in this macro, which automates
@ -124,6 +128,14 @@ CheckedError atot<Offset<void>>(const char *s, Parser &parser,
return NoError();
}
template<>
CheckedError atot<Offset64<void>>(const char *s, Parser &parser,
Offset64<void> *val) {
(void)parser;
*val = Offset64<void>(atoi(s));
return NoError();
}
template<typename T>
static T *LookupTableByName(const SymbolTable<T> &table,
const std::string &name,
@ -957,11 +969,11 @@ CheckedError Parser::ParseField(StructDef &struct_def) {
ECHECK(AddField(struct_def, name, type, &field));
if (typefield) {
// We preserve the relation between the typefield
// and field, so we can easily map it in the code
// generators.
typefield->sibling_union_field = field;
field->sibling_union_field = typefield;
// We preserve the relation between the typefield
// and field, so we can easily map it in the code
// generators.
typefield->sibling_union_field = field;
field->sibling_union_field = typefield;
}
if (token_ == '=') {
@ -1036,6 +1048,65 @@ CheckedError Parser::ParseField(StructDef &struct_def) {
}
}
if (field->attributes.Lookup("vector64") != nullptr) {
if (!IsVector(type)) {
return Error("`vector64` attribute can only be applied on vectors.");
}
// Upgrade the type to be a BASE_TYPE_VECTOR64, since the attributes are
// parsed after the type.
const BaseType element_base_type = type.element;
type = Type(BASE_TYPE_VECTOR64, type.struct_def, type.enum_def);
type.element = element_base_type;
// Since the field was already added to the parent object, update the type
// in place.
field->value.type = type;
// 64-bit vectors imply the offset64 attribute.
field->offset64 = true;
}
// Record that this field uses 64-bit offsets.
if (field->attributes.Lookup("offset64") != nullptr) {
// TODO(derekbailey): would be nice to have this be a recommendation or hint
// instead of a warning.
if (type.base_type == BASE_TYPE_VECTOR64) {
Warning("attribute `vector64` implies `offset64` and isn't required.");
}
field->offset64 = true;
}
// Check for common conditions with Offset64 fields.
if (field->offset64) {
// TODO(derekbailey): this is where we can disable string support for
// offset64, as that is not a hard requirement to have.
if (!IsString(type) && !IsVector(type)) {
return Error(
"only string and vectors can have `offset64` attribute applied");
}
// If this is a Vector, only scalar and scalar-like (structs) items are
// allowed.
// TODO(derekbailey): allow vector of strings, just require that the strings
// are Offset64<string>.
if (IsVector(type) &&
!((IsScalar(type.element) && !IsEnum(type.VectorType())) ||
IsStruct(type.VectorType()))) {
return Error("only vectors of scalars are allowed to be 64-bit.");
}
// Lastly, check if it is supported by the specified generated languages. Do
// this last so the above checks can inform the user of schema errors to fix
// first.
if (!Supports64BitOffsets()) {
return Error(
"fields using 64-bit offsets are not yet supported in at least one "
"of the specified programming languages.");
}
}
// For historical convenience reasons, string keys are assumed required.
// Scalars are kDefault unless otherwise specified.
// Nonscalars are kOptional unless required;
@ -1058,7 +1129,8 @@ CheckedError Parser::ParseField(StructDef &struct_def) {
if (field->key) {
if (struct_def.has_key) return Error("only one field may be set as 'key'");
struct_def.has_key = true;
auto is_valid = IsScalar(type.base_type) || IsString(type) || IsStruct(type);
auto is_valid =
IsScalar(type.base_type) || IsString(type) || IsStruct(type);
if (IsArray(type)) {
is_valid |=
IsScalar(type.VectorType().base_type) || IsStruct(type.VectorType());
@ -1161,7 +1233,7 @@ CheckedError Parser::ParseField(StructDef &struct_def) {
if (nested->type.base_type != BASE_TYPE_STRING)
return Error(
"nested_flatbuffer attribute must be a string (the root type)");
if (type.base_type != BASE_TYPE_VECTOR || type.element != BASE_TYPE_UCHAR)
if (!IsVector(type.base_type) || type.element != BASE_TYPE_UCHAR)
return Error(
"nested_flatbuffer attribute may only apply to a vector of ubyte");
// This will cause an error if the root type of the nested flatbuffer
@ -1230,7 +1302,7 @@ CheckedError Parser::ParseComma() {
CheckedError Parser::ParseAnyValue(Value &val, FieldDef *field,
size_t parent_fieldn,
const StructDef *parent_struct_def,
uoffset_t count, bool inside_vector) {
size_t count, bool inside_vector) {
switch (val.type.base_type) {
case BASE_TYPE_UNION: {
FLATBUFFERS_ASSERT(field);
@ -1300,7 +1372,7 @@ CheckedError Parser::ParseAnyValue(Value &val, FieldDef *field,
return Error(
"union types vector smaller than union values vector for: " +
field->name);
enum_idx = vector_of_union_types->Get(count);
enum_idx = vector_of_union_types->Get(static_cast<uoffset_t>(count));
} else {
ECHECK(atot(constant.c_str(), *this, &enum_idx));
}
@ -1329,9 +1401,10 @@ CheckedError Parser::ParseAnyValue(Value &val, FieldDef *field,
ECHECK(ParseString(val, field->shared));
break;
}
case BASE_TYPE_VECTOR64:
case BASE_TYPE_VECTOR: {
uoffset_t off;
ECHECK(ParseVector(val.type.VectorType(), &off, field, parent_fieldn));
ECHECK(ParseVector(val.type, &off, field, parent_fieldn));
val.constant = NumToString(off);
break;
}
@ -1503,6 +1576,9 @@ CheckedError Parser::ParseTable(const StructDef &struct_def, std::string *value,
for (size_t size = struct_def.sortbysize ? sizeof(largest_scalar_t) : 1; size;
size /= 2) {
// Go through elements in reverse, since we're building the data backwards.
// TODO(derekbailey): this doesn't work when there are Offset64 fields, as
// those have to be built first. So this needs to be changed to iterate over
// Offset64 then Offset32 fields.
for (auto it = field_stack_.rbegin();
it != field_stack_.rbegin() + fieldn_outer; ++it) {
auto &field_value = it->first;
@ -1510,7 +1586,7 @@ CheckedError Parser::ParseTable(const StructDef &struct_def, std::string *value,
if (!struct_def.sortbysize ||
size == SizeOf(field_value.type.base_type)) {
switch (field_value.type.base_type) {
// clang-format off
// clang-format off
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, ...) \
case BASE_TYPE_ ## ENUM: \
builder_.Pad(field->padding); \
@ -1541,9 +1617,16 @@ CheckedError Parser::ParseTable(const StructDef &struct_def, std::string *value,
if (IsStruct(field->value.type)) { \
SerializeStruct(*field->value.type.struct_def, field_value); \
} else { \
CTYPE val; \
ECHECK(atot(field_value.constant.c_str(), *this, &val)); \
builder_.AddOffset(field_value.offset, val); \
/* Special case for fields that use 64-bit addressing */ \
if(field->offset64) { \
Offset64<void> offset; \
ECHECK(atot(field_value.constant.c_str(), *this, &offset)); \
builder_.AddOffset(field_value.offset, offset); \
} else { \
CTYPE val; \
ECHECK(atot(field_value.constant.c_str(), *this, &val)); \
builder_.AddOffset(field_value.offset, val); \
} \
} \
break;
FLATBUFFERS_GEN_TYPES_POINTER(FLATBUFFERS_TD)
@ -1581,7 +1664,7 @@ CheckedError Parser::ParseTable(const StructDef &struct_def, std::string *value,
}
template<typename F>
CheckedError Parser::ParseVectorDelimiters(uoffset_t &count, F body) {
CheckedError Parser::ParseVectorDelimiters(size_t &count, F body) {
EXPECT('[');
for (;;) {
if ((!opts.strict_json || !count) && Is(']')) break;
@ -1611,10 +1694,11 @@ CheckedError Parser::ParseAlignAttribute(const std::string &align_constant,
NumToString(FLATBUFFERS_MAX_ALIGNMENT));
}
CheckedError Parser::ParseVector(const Type &type, uoffset_t *ovalue,
CheckedError Parser::ParseVector(const Type &vector_type, uoffset_t *ovalue,
FieldDef *field, size_t fieldn) {
uoffset_t count = 0;
auto err = ParseVectorDelimiters(count, [&](uoffset_t &) -> CheckedError {
Type type = vector_type.VectorType();
size_t count = 0;
auto err = ParseVectorDelimiters(count, [&](size_t &) -> CheckedError {
Value val;
val.type = type;
ECHECK(ParseAnyValue(val, field, fieldn, nullptr, count, true));
@ -1634,12 +1718,18 @@ CheckedError Parser::ParseVector(const Type &type, uoffset_t *ovalue,
}
// TODO Fix using element alignment as size (`elemsize`)!
builder_.StartVector(len, elemsize, alignment);
for (uoffset_t i = 0; i < count; i++) {
if (vector_type.base_type == BASE_TYPE_VECTOR64) {
// TODO(derekbailey): this requires a 64-bit builder.
// builder_.StartVector<Offset64, uoffset64_t>(len, elemsize, alignment);
builder_.StartVector(len, elemsize, alignment);
} else {
builder_.StartVector(len, elemsize, alignment);
}
for (size_t i = 0; i < count; i++) {
// start at the back, since we're building the data backwards.
auto &val = field_stack_.back().first;
switch (val.type.base_type) {
// clang-format off
// clang-format off
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE,...) \
case BASE_TYPE_ ## ENUM: \
if (IsStruct(val.type)) SerializeStruct(*val.type.struct_def, val); \
@ -1657,7 +1747,11 @@ CheckedError Parser::ParseVector(const Type &type, uoffset_t *ovalue,
}
builder_.ClearOffsets();
*ovalue = builder_.EndVector(count);
if (vector_type.base_type == BASE_TYPE_VECTOR64) {
*ovalue = builder_.EndVector<uoffset64_t>(count);
} else {
*ovalue = builder_.EndVector(count);
}
if (type.base_type == BASE_TYPE_STRUCT && type.struct_def->has_key) {
// We should sort this vector. Find the key first.
@ -1725,8 +1819,8 @@ CheckedError Parser::ParseArray(Value &array) {
FlatBufferBuilder builder;
const auto &type = array.type.VectorType();
auto length = array.type.fixed_length;
uoffset_t count = 0;
auto err = ParseVectorDelimiters(count, [&](uoffset_t &) -> CheckedError {
size_t count = 0;
auto err = ParseVectorDelimiters(count, [&](size_t &) -> CheckedError {
stack.emplace_back(Value());
auto &val = stack.back();
val.type = type;
@ -1977,8 +2071,7 @@ CheckedError Parser::TryTypedValue(const std::string *name, int dtoken,
e.type.base_type = req;
} else {
return Error(std::string("type mismatch: expecting: ") +
TypeName(e.type.base_type) +
", found: " + TypeName(req) +
TypeName(e.type.base_type) + ", found: " + TypeName(req) +
", name: " + (name ? *name : "") + ", value: " + e.constant);
}
}
@ -2595,6 +2688,11 @@ bool Parser::SupportsAdvancedArrayFeatures() const {
IDLOptions::kBinary | IDLOptions::kRust | IDLOptions::kTs)) == 0;
}
bool Parser::Supports64BitOffsets() const {
return (opts.lang_to_generate &
~(IDLOptions::kCpp | IDLOptions::kJson | IDLOptions::kBinary)) == 0;
}
Namespace *Parser::UniqueNamespace(Namespace *ns) {
for (auto it = namespaces_.begin(); it != namespaces_.end(); ++it) {
if (ns->components == (*it)->components) {
@ -3217,10 +3315,9 @@ CheckedError Parser::SkipAnyJsonValue() {
});
}
case '[': {
uoffset_t count = 0;
return ParseVectorDelimiters(count, [&](uoffset_t &) -> CheckedError {
return SkipAnyJsonValue();
});
size_t count = 0;
return ParseVectorDelimiters(
count, [&](size_t &) -> CheckedError { return SkipAnyJsonValue(); });
}
case kTokenStringConstant:
case kTokenIntegerConstant:
@ -3269,8 +3366,8 @@ CheckedError Parser::ParseFlexBufferValue(flexbuffers::Builder *builder) {
}
case '[': {
auto start = builder->StartVector();
uoffset_t count = 0;
ECHECK(ParseVectorDelimiters(count, [&](uoffset_t &) -> CheckedError {
size_t count = 0;
ECHECK(ParseVectorDelimiters(count, [&](size_t &) -> CheckedError {
return ParseFlexBufferValue(builder);
}));
builder->EndVector(start, false, false);
@ -3922,7 +4019,7 @@ Offset<reflection::Field> FieldDef::Serialize(FlatBufferBuilder *builder,
IsInteger(value.type.base_type) ? StringToInt(value.constant.c_str()) : 0,
// result may be platform-dependent if underlying is float (not double)
IsFloat(value.type.base_type) ? d : 0.0, deprecated, IsRequired(), key,
attr__, docs__, IsOptional(), static_cast<uint16_t>(padding));
attr__, docs__, IsOptional(), static_cast<uint16_t>(padding), offset64);
// TODO: value.constant is almost always "0", we could save quite a bit of
// space by sharing it. Same for common values of value.type.
}
@ -3940,6 +4037,7 @@ bool FieldDef::Deserialize(Parser &parser, const reflection::Field *field) {
presence = FieldDef::MakeFieldPresence(field->optional(), field->required());
padding = field->padding();
key = field->key();
offset64 = field->offset64();
if (!DeserializeAttributes(parser, field->attributes())) return false;
// TODO: this should probably be handled by a separate attribute
if (attributes.Lookup("flexbuffer")) {
@ -4264,12 +4362,18 @@ std::string Parser::ConformTo(const Parser &base) {
auto field_base = struct_def_base->fields.Lookup(field.name);
const auto qualified_field_name = qualified_name + "." + field.name;
if (field_base) {
if (field.value.offset != field_base->value.offset)
if (field.value.offset != field_base->value.offset) {
return "offsets differ for field: " + qualified_field_name;
if (field.value.constant != field_base->value.constant)
}
if (field.value.constant != field_base->value.constant) {
return "defaults differ for field: " + qualified_field_name;
if (!EqualByName(field.value.type, field_base->value.type))
}
if (!EqualByName(field.value.type, field_base->value.type)) {
return "types differ for field: " + qualified_field_name;
}
if (field.offset64 != field_base->offset64) {
return "offset types differ for field: " + qualified_field_name;
}
} else {
// Doesn't have to exist, deleting fields is fine.
// But we should check if there is a field that has the same offset

View File

@ -0,0 +1,8 @@
namespace v1;
table RootTable {
a:float;
b:[uint8];
}
root_type RootTable;

View File

@ -0,0 +1,219 @@
// automatically generated by the FlatBuffers compiler, do not modify
#ifndef FLATBUFFERS_GENERATED_V1_V1_H_
#define FLATBUFFERS_GENERATED_V1_V1_H_
#include "flatbuffers/flatbuffers.h"
// Ensure the included flatbuffers.h is the same version as when this file was
// generated, otherwise it may not be compatible.
static_assert(FLATBUFFERS_VERSION_MAJOR == 23 &&
FLATBUFFERS_VERSION_MINOR == 5 &&
FLATBUFFERS_VERSION_REVISION == 8,
"Non-compatible flatbuffers version included");
namespace v1 {
struct RootTable;
struct RootTableBuilder;
struct RootTableT;
bool operator==(const RootTableT &lhs, const RootTableT &rhs);
bool operator!=(const RootTableT &lhs, const RootTableT &rhs);
inline const ::flatbuffers::TypeTable *RootTableTypeTable();
struct RootTableT : public ::flatbuffers::NativeTable {
typedef RootTable TableType;
float a = 0.0f;
std::vector<uint8_t> b{};
};
struct RootTable FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table {
typedef RootTableT NativeTableType;
typedef RootTableBuilder Builder;
static const ::flatbuffers::TypeTable *MiniReflectTypeTable() {
return RootTableTypeTable();
}
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_A = 4,
VT_B = 6
};
float a() const {
return GetField<float>(VT_A, 0.0f);
}
bool mutate_a(float _a = 0.0f) {
return SetField<float>(VT_A, _a, 0.0f);
}
const ::flatbuffers::Vector<uint8_t> *b() const {
return GetPointer<const ::flatbuffers::Vector<uint8_t> *>(VT_B);
}
::flatbuffers::Vector<uint8_t> *mutable_b() {
return GetPointer<::flatbuffers::Vector<uint8_t> *>(VT_B);
}
bool Verify(::flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyField<float>(verifier, VT_A, 4) &&
VerifyOffset(verifier, VT_B) &&
verifier.VerifyVector(b()) &&
verifier.EndTable();
}
RootTableT *UnPack(const ::flatbuffers::resolver_function_t *_resolver = nullptr) const;
void UnPackTo(RootTableT *_o, const ::flatbuffers::resolver_function_t *_resolver = nullptr) const;
static ::flatbuffers::Offset<RootTable> Pack(::flatbuffers::FlatBufferBuilder &_fbb, const RootTableT* _o, const ::flatbuffers::rehasher_function_t *_rehasher = nullptr);
};
struct RootTableBuilder {
typedef RootTable Table;
::flatbuffers::FlatBufferBuilder &fbb_;
::flatbuffers::uoffset_t start_;
void add_a(float a) {
fbb_.AddElement<float>(RootTable::VT_A, a, 0.0f);
}
void add_b(::flatbuffers::Offset<::flatbuffers::Vector<uint8_t>> b) {
fbb_.AddOffset(RootTable::VT_B, b);
}
explicit RootTableBuilder(::flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
::flatbuffers::Offset<RootTable> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = ::flatbuffers::Offset<RootTable>(end);
return o;
}
};
inline ::flatbuffers::Offset<RootTable> CreateRootTable(
::flatbuffers::FlatBufferBuilder &_fbb,
float a = 0.0f,
::flatbuffers::Offset<::flatbuffers::Vector<uint8_t>> b = 0) {
RootTableBuilder builder_(_fbb);
builder_.add_b(b);
builder_.add_a(a);
return builder_.Finish();
}
inline ::flatbuffers::Offset<RootTable> CreateRootTableDirect(
::flatbuffers::FlatBufferBuilder &_fbb,
float a = 0.0f,
const std::vector<uint8_t> *b = nullptr) {
auto b__ = b ? _fbb.CreateVector<uint8_t>(*b) : 0;
return v1::CreateRootTable(
_fbb,
a,
b__);
}
::flatbuffers::Offset<RootTable> CreateRootTable(::flatbuffers::FlatBufferBuilder &_fbb, const RootTableT *_o, const ::flatbuffers::rehasher_function_t *_rehasher = nullptr);
inline bool operator==(const RootTableT &lhs, const RootTableT &rhs) {
return
(lhs.a == rhs.a) &&
(lhs.b == rhs.b);
}
inline bool operator!=(const RootTableT &lhs, const RootTableT &rhs) {
return !(lhs == rhs);
}
inline RootTableT *RootTable::UnPack(const ::flatbuffers::resolver_function_t *_resolver) const {
auto _o = std::unique_ptr<RootTableT>(new RootTableT());
UnPackTo(_o.get(), _resolver);
return _o.release();
}
inline void RootTable::UnPackTo(RootTableT *_o, const ::flatbuffers::resolver_function_t *_resolver) const {
(void)_o;
(void)_resolver;
{ auto _e = a(); _o->a = _e; }
{ auto _e = b(); if (_e) { _o->b.resize(_e->size()); std::copy(_e->begin(), _e->end(), _o->b.begin()); } }
}
inline ::flatbuffers::Offset<RootTable> RootTable::Pack(::flatbuffers::FlatBufferBuilder &_fbb, const RootTableT* _o, const ::flatbuffers::rehasher_function_t *_rehasher) {
return CreateRootTable(_fbb, _o, _rehasher);
}
inline ::flatbuffers::Offset<RootTable> CreateRootTable(::flatbuffers::FlatBufferBuilder &_fbb, const RootTableT *_o, const ::flatbuffers::rehasher_function_t *_rehasher) {
(void)_rehasher;
(void)_o;
struct _VectorArgs { ::flatbuffers::FlatBufferBuilder *__fbb; const RootTableT* __o; const ::flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
auto _a = _o->a;
auto _b = _o->b.size() ? _fbb.CreateVector(_o->b) : 0;
return v1::CreateRootTable(
_fbb,
_a,
_b);
}
inline const ::flatbuffers::TypeTable *RootTableTypeTable() {
static const ::flatbuffers::TypeCode type_codes[] = {
{ ::flatbuffers::ET_FLOAT, 0, -1 },
{ ::flatbuffers::ET_UCHAR, 1, -1 }
};
static const char * const names[] = {
"a",
"b"
};
static const ::flatbuffers::TypeTable tt = {
::flatbuffers::ST_TABLE, 2, type_codes, nullptr, nullptr, nullptr, names
};
return &tt;
}
inline const v1::RootTable *GetRootTable(const void *buf) {
return ::flatbuffers::GetRoot<v1::RootTable>(buf);
}
inline const v1::RootTable *GetSizePrefixedRootTable(const void *buf) {
return ::flatbuffers::GetSizePrefixedRoot<v1::RootTable>(buf);
}
inline RootTable *GetMutableRootTable(void *buf) {
return ::flatbuffers::GetMutableRoot<RootTable>(buf);
}
inline v1::RootTable *GetMutableSizePrefixedRootTable(void *buf) {
return ::flatbuffers::GetMutableSizePrefixedRoot<v1::RootTable>(buf);
}
inline bool VerifyRootTableBuffer(
::flatbuffers::Verifier &verifier) {
return verifier.VerifyBuffer<v1::RootTable>(nullptr);
}
inline bool VerifySizePrefixedRootTableBuffer(
::flatbuffers::Verifier &verifier) {
return verifier.VerifySizePrefixedBuffer<v1::RootTable>(nullptr);
}
inline void FinishRootTableBuffer(
::flatbuffers::FlatBufferBuilder &fbb,
::flatbuffers::Offset<v1::RootTable> root) {
fbb.Finish(root);
}
inline void FinishSizePrefixedRootTableBuffer(
::flatbuffers::FlatBufferBuilder &fbb,
::flatbuffers::Offset<v1::RootTable> root) {
fbb.FinishSizePrefixed(root);
}
inline std::unique_ptr<v1::RootTableT> UnPackRootTable(
const void *buf,
const ::flatbuffers::resolver_function_t *res = nullptr) {
return std::unique_ptr<v1::RootTableT>(GetRootTable(buf)->UnPack(res));
}
inline std::unique_ptr<v1::RootTableT> UnPackSizePrefixedRootTable(
const void *buf,
const ::flatbuffers::resolver_function_t *res = nullptr) {
return std::unique_ptr<v1::RootTableT>(GetSizePrefixedRootTable(buf)->UnPack(res));
}
} // namespace v1
#endif // FLATBUFFERS_GENERATED_V1_V1_H_

View File

@ -0,0 +1,9 @@
namespace v2;
table RootTable {
a:float;
b:[uint8];
big_vector:[uint8] (vector64);
}
root_type RootTable;

View File

@ -0,0 +1,243 @@
// automatically generated by the FlatBuffers compiler, do not modify
#ifndef FLATBUFFERS_GENERATED_V2_V2_H_
#define FLATBUFFERS_GENERATED_V2_V2_H_
#include "flatbuffers/flatbuffers.h"
// Ensure the included flatbuffers.h is the same version as when this file was
// generated, otherwise it may not be compatible.
static_assert(FLATBUFFERS_VERSION_MAJOR == 23 &&
FLATBUFFERS_VERSION_MINOR == 5 &&
FLATBUFFERS_VERSION_REVISION == 8,
"Non-compatible flatbuffers version included");
namespace v2 {
struct RootTable;
struct RootTableBuilder;
struct RootTableT;
bool operator==(const RootTableT &lhs, const RootTableT &rhs);
bool operator!=(const RootTableT &lhs, const RootTableT &rhs);
inline const ::flatbuffers::TypeTable *RootTableTypeTable();
struct RootTableT : public ::flatbuffers::NativeTable {
typedef RootTable TableType;
float a = 0.0f;
std::vector<uint8_t> b{};
std::vector<uint8_t> big_vector{};
};
struct RootTable FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table {
typedef RootTableT NativeTableType;
typedef RootTableBuilder Builder;
static const ::flatbuffers::TypeTable *MiniReflectTypeTable() {
return RootTableTypeTable();
}
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_A = 4,
VT_B = 6,
VT_BIG_VECTOR = 8
};
float a() const {
return GetField<float>(VT_A, 0.0f);
}
bool mutate_a(float _a = 0.0f) {
return SetField<float>(VT_A, _a, 0.0f);
}
const ::flatbuffers::Vector<uint8_t> *b() const {
return GetPointer<const ::flatbuffers::Vector<uint8_t> *>(VT_B);
}
::flatbuffers::Vector<uint8_t> *mutable_b() {
return GetPointer<::flatbuffers::Vector<uint8_t> *>(VT_B);
}
const ::flatbuffers::Vector64<uint8_t> *big_vector() const {
return GetPointer64<const ::flatbuffers::Vector64<uint8_t> *>(VT_BIG_VECTOR);
}
::flatbuffers::Vector64<uint8_t> *mutable_big_vector() {
return GetPointer64<::flatbuffers::Vector64<uint8_t> *>(VT_BIG_VECTOR);
}
bool Verify(::flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyField<float>(verifier, VT_A, 4) &&
VerifyOffset(verifier, VT_B) &&
verifier.VerifyVector(b()) &&
VerifyOffset64(verifier, VT_BIG_VECTOR) &&
verifier.VerifyVector(big_vector()) &&
verifier.EndTable();
}
RootTableT *UnPack(const ::flatbuffers::resolver_function_t *_resolver = nullptr) const;
void UnPackTo(RootTableT *_o, const ::flatbuffers::resolver_function_t *_resolver = nullptr) const;
static ::flatbuffers::Offset<RootTable> Pack(::flatbuffers::FlatBufferBuilder64 &_fbb, const RootTableT* _o, const ::flatbuffers::rehasher_function_t *_rehasher = nullptr);
};
struct RootTableBuilder {
typedef RootTable Table;
::flatbuffers::FlatBufferBuilder64 &fbb_;
::flatbuffers::uoffset_t start_;
void add_a(float a) {
fbb_.AddElement<float>(RootTable::VT_A, a, 0.0f);
}
void add_b(::flatbuffers::Offset<::flatbuffers::Vector<uint8_t>> b) {
fbb_.AddOffset(RootTable::VT_B, b);
}
void add_big_vector(::flatbuffers::Offset64<::flatbuffers::Vector64<uint8_t>> big_vector) {
fbb_.AddOffset(RootTable::VT_BIG_VECTOR, big_vector);
}
explicit RootTableBuilder(::flatbuffers::FlatBufferBuilder64 &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
::flatbuffers::Offset<RootTable> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = ::flatbuffers::Offset<RootTable>(end);
return o;
}
};
inline ::flatbuffers::Offset<RootTable> CreateRootTable(
::flatbuffers::FlatBufferBuilder64 &_fbb,
float a = 0.0f,
::flatbuffers::Offset<::flatbuffers::Vector<uint8_t>> b = 0,
::flatbuffers::Offset64<::flatbuffers::Vector64<uint8_t>> big_vector = 0) {
RootTableBuilder builder_(_fbb);
builder_.add_big_vector(big_vector);
builder_.add_b(b);
builder_.add_a(a);
return builder_.Finish();
}
inline ::flatbuffers::Offset<RootTable> CreateRootTableDirect(
::flatbuffers::FlatBufferBuilder64 &_fbb,
float a = 0.0f,
const std::vector<uint8_t> *b = nullptr,
const std::vector<uint8_t> *big_vector = nullptr) {
auto big_vector__ = big_vector ? _fbb.CreateVector64(*big_vector) : 0;
auto b__ = b ? _fbb.CreateVector<uint8_t>(*b) : 0;
return v2::CreateRootTable(
_fbb,
a,
b__,
big_vector__);
}
::flatbuffers::Offset<RootTable> CreateRootTable(::flatbuffers::FlatBufferBuilder64 &_fbb, const RootTableT *_o, const ::flatbuffers::rehasher_function_t *_rehasher = nullptr);
inline bool operator==(const RootTableT &lhs, const RootTableT &rhs) {
return
(lhs.a == rhs.a) &&
(lhs.b == rhs.b) &&
(lhs.big_vector == rhs.big_vector);
}
inline bool operator!=(const RootTableT &lhs, const RootTableT &rhs) {
return !(lhs == rhs);
}
inline RootTableT *RootTable::UnPack(const ::flatbuffers::resolver_function_t *_resolver) const {
auto _o = std::unique_ptr<RootTableT>(new RootTableT());
UnPackTo(_o.get(), _resolver);
return _o.release();
}
inline void RootTable::UnPackTo(RootTableT *_o, const ::flatbuffers::resolver_function_t *_resolver) const {
(void)_o;
(void)_resolver;
{ auto _e = a(); _o->a = _e; }
{ auto _e = b(); if (_e) { _o->b.resize(_e->size()); std::copy(_e->begin(), _e->end(), _o->b.begin()); } }
{ auto _e = big_vector(); if (_e) { _o->big_vector.resize(_e->size()); std::copy(_e->begin(), _e->end(), _o->big_vector.begin()); } }
}
inline ::flatbuffers::Offset<RootTable> RootTable::Pack(::flatbuffers::FlatBufferBuilder64 &_fbb, const RootTableT* _o, const ::flatbuffers::rehasher_function_t *_rehasher) {
return CreateRootTable(_fbb, _o, _rehasher);
}
inline ::flatbuffers::Offset<RootTable> CreateRootTable(::flatbuffers::FlatBufferBuilder64 &_fbb, const RootTableT *_o, const ::flatbuffers::rehasher_function_t *_rehasher) {
(void)_rehasher;
(void)_o;
struct _VectorArgs { ::flatbuffers::FlatBufferBuilder64 *__fbb; const RootTableT* __o; const ::flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
auto _a = _o->a;
auto _b = _o->b.size() ? _fbb.CreateVector(_o->b) : 0;
auto _big_vector = _o->big_vector.size() ? _fbb.CreateVector64(_o->big_vector) : 0;
return v2::CreateRootTable(
_fbb,
_a,
_b,
_big_vector);
}
inline const ::flatbuffers::TypeTable *RootTableTypeTable() {
static const ::flatbuffers::TypeCode type_codes[] = {
{ ::flatbuffers::ET_FLOAT, 0, -1 },
{ ::flatbuffers::ET_UCHAR, 1, -1 },
{ ::flatbuffers::ET_UCHAR, 1, -1 }
};
static const char * const names[] = {
"a",
"b",
"big_vector"
};
static const ::flatbuffers::TypeTable tt = {
::flatbuffers::ST_TABLE, 3, type_codes, nullptr, nullptr, nullptr, names
};
return &tt;
}
inline const v2::RootTable *GetRootTable(const void *buf) {
return ::flatbuffers::GetRoot<v2::RootTable>(buf);
}
inline const v2::RootTable *GetSizePrefixedRootTable(const void *buf) {
return ::flatbuffers::GetSizePrefixedRoot<v2::RootTable,::flatbuffers::uoffset64_t>(buf);
}
inline RootTable *GetMutableRootTable(void *buf) {
return ::flatbuffers::GetMutableRoot<RootTable>(buf);
}
inline v2::RootTable *GetMutableSizePrefixedRootTable(void *buf) {
return ::flatbuffers::GetMutableSizePrefixedRoot<v2::RootTable,::flatbuffers::uoffset64_t>(buf);
}
inline bool VerifyRootTableBuffer(
::flatbuffers::Verifier &verifier) {
return verifier.VerifyBuffer<v2::RootTable>(nullptr);
}
inline bool VerifySizePrefixedRootTableBuffer(
::flatbuffers::Verifier &verifier) {
return verifier.VerifySizePrefixedBuffer<v2::RootTable,::flatbuffers::uoffset64_t>(nullptr);
}
inline void FinishRootTableBuffer(
::flatbuffers::FlatBufferBuilder64 &fbb,
::flatbuffers::Offset<v2::RootTable> root) {
fbb.Finish(root);
}
inline void FinishSizePrefixedRootTableBuffer(
::flatbuffers::FlatBufferBuilder64 &fbb,
::flatbuffers::Offset<v2::RootTable> root) {
fbb.FinishSizePrefixed(root);
}
inline std::unique_ptr<v2::RootTableT> UnPackRootTable(
const void *buf,
const ::flatbuffers::resolver_function_t *res = nullptr) {
return std::unique_ptr<v2::RootTableT>(GetRootTable(buf)->UnPack(res));
}
inline std::unique_ptr<v2::RootTableT> UnPackSizePrefixedRootTable(
const void *buf,
const ::flatbuffers::resolver_function_t *res = nullptr) {
return std::unique_ptr<v2::RootTableT>(GetSizePrefixedRootTable(buf)->UnPack(res));
}
} // namespace v2
#endif // FLATBUFFERS_GENERATED_V2_V2_H_

View File

@ -0,0 +1,447 @@
#include "offset64_test.h"
#include <stdint.h>
#include <cstdint>
#include <fstream>
#include <limits>
#include <ostream>
#include "evolution/v1_generated.h"
#include "evolution/v2_generated.h"
#include "flatbuffers/base.h"
#include "flatbuffers/buffer.h"
#include "flatbuffers/flatbuffer_builder.h"
#include "flatbuffers/flatbuffers.h"
#include "test_64bit_generated.h"
#include "test_assert.h"
namespace flatbuffers {
namespace tests {
void Offset64Test() {
FlatBufferBuilder64 builder;
const size_t far_vector_size = 1LL << 2;
const size_t big_vector_size = 1LL << 31;
{
// First create the vectors that will be copied to the buffer.
std::vector<uint8_t> far_data;
far_data.resize(far_vector_size);
far_data[0] = 4;
far_data[far_vector_size - 1] = 2;
std::vector<uint8_t> big_data;
big_data.resize(big_vector_size);
big_data[0] = 8;
big_data[big_vector_size - 1] = 3;
// Then serialize all the fields that have 64-bit offsets, as these must be
// serialized before any 32-bit fields are added to the buffer.
const Offset64<Vector<uint8_t>> far_vector_offset =
builder.CreateVector64<Vector>(far_data);
const Offset64<String> far_string_offset =
builder.CreateString<Offset64>("some far string");
const Offset64<Vector64<uint8_t>> big_vector_offset =
builder.CreateVector64(big_data);
// Now that we are done with the 64-bit fields, we can create and add the
// normal fields.
const Offset<String> near_string_offset =
builder.CreateString("some near string");
// Finish by building the root table by passing in all the offsets.
const Offset<RootTable> root_table_offset =
CreateRootTable(builder, far_vector_offset, 0, far_string_offset,
big_vector_offset, near_string_offset);
// Finish the buffer.
builder.Finish(root_table_offset);
// Ensure the buffer is big.
TEST_ASSERT(builder.GetSize() > FLATBUFFERS_MAX_BUFFER_SIZE);
Verifier::Options options;
// Allow the verifier to verify 64-bit buffers.
options.max_size = FLATBUFFERS_MAX_64_BUFFER_SIZE;
options.assert = true;
Verifier verifier(builder.GetBufferPointer(), builder.GetSize(), options);
TEST_EQ(VerifyRootTableBuffer(verifier), true);
}
{
const RootTable *root_table = GetRootTable(builder.GetBufferPointer());
// Expect the far vector to be properly sized.
TEST_EQ(root_table->far_vector()->size(), far_vector_size);
TEST_EQ(root_table->far_vector()->Get(0), 4);
TEST_EQ(root_table->far_vector()->Get(far_vector_size - 1), 2);
TEST_EQ_STR(root_table->far_string()->c_str(), "some far string");
// Expect the big vector to be properly sized.
TEST_EQ(root_table->big_vector()->size(), big_vector_size);
TEST_EQ(root_table->big_vector()->Get(0), 8);
TEST_EQ(root_table->big_vector()->Get(big_vector_size - 1), 3);
TEST_EQ_STR(root_table->near_string()->c_str(), "some near string");
}
}
void Offset64SerializedFirst() {
FlatBufferBuilder64 fbb;
// First create the vectors that will be copied to the buffer.
std::vector<uint8_t> data;
data.resize(64);
// Then serialize all the fields that have 64-bit offsets, as these must be
// serialized before any 32-bit fields are added to the buffer.
fbb.CreateVector64(data);
// TODO(derekbailey): figure out how to test assertions.
// Uncommenting this line should fail the test with an assertion.
// fbb.CreateString("some near string");
fbb.CreateVector64(data);
}
void Offset64NestedFlatBuffer() {
FlatBufferBuilder64 fbb;
// First serialize a nested buffer.
const Offset<String> near_string_offset =
fbb.CreateString("nested: some near string");
// Finish by building the root table by passing in all the offsets.
const Offset<RootTable> root_table_offset =
CreateRootTable(fbb, 0, 0, 0, 0, near_string_offset, 0);
// Finish the buffer.
fbb.Finish(root_table_offset);
// Ensure the buffer is valid.
const RootTable *root_table = GetRootTable(fbb.GetBufferPointer());
TEST_EQ_STR(root_table->near_string()->c_str(), "nested: some near string");
// Copy the data out of the builder.
std::vector<uint8_t> nested_data{ fbb.GetBufferPointer(),
fbb.GetBufferPointer() + fbb.GetSize() };
{
// Clear so we can reuse the builder.
fbb.Clear();
const Offset64<Vector64<uint8_t>> nested_flatbuffer_offset =
fbb.CreateVector64<Vector64>(nested_data);
// Now that we are done with the 64-bit fields, we can create and add the
// normal fields.
const Offset<String> near_string_offset =
fbb.CreateString("some near string");
// Finish by building the root table by passing in all the offsets.
const Offset<RootTable> root_table_offset = CreateRootTable(
fbb, 0, 0, 0, 0, near_string_offset, nested_flatbuffer_offset);
// Finish the buffer.
fbb.Finish(root_table_offset);
Verifier::Options options;
// Allow the verifier to verify 64-bit buffers.
options.max_size = FLATBUFFERS_MAX_64_BUFFER_SIZE;
options.assert = true;
Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize(), options);
TEST_EQ(VerifyRootTableBuffer(verifier), true);
}
{
const RootTable *root_table = GetRootTable(fbb.GetBufferPointer());
// Test that the parent buffer field is ok.
TEST_EQ_STR(root_table->near_string()->c_str(), "some near string");
// Expect nested buffer to be properly sized.
TEST_EQ(root_table->nested_root()->size(), nested_data.size());
// Expect the direct accessors to the nested buffer work.
TEST_EQ_STR(root_table->nested_root_nested_root()->near_string()->c_str(),
"nested: some near string");
}
}
void Offset64CreateDirect() {
FlatBufferBuilder64 fbb;
// Create a vector of some data
std::vector<uint8_t> data{ 0, 1, 2 };
// Call the "Direct" creation method to ensure that things are added to the
// buffer in the correct order, Offset64 first followed by any Offsets.
const Offset<RootTable> root_table_offset = CreateRootTableDirect(
fbb, &data, 0, "some far string", &data, "some near string");
// Finish the buffer.
fbb.Finish(root_table_offset);
Verifier::Options options;
// Allow the verifier to verify 64-bit buffers.
options.max_size = FLATBUFFERS_MAX_64_BUFFER_SIZE;
options.assert = true;
Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize(), options);
TEST_EQ(VerifyRootTableBuffer(verifier), true);
// Verify the data.
const RootTable *root_table = GetRootTable(fbb.GetBufferPointer());
TEST_EQ(root_table->far_vector()->size(), data.size());
TEST_EQ(root_table->big_vector()->size(), data.size());
TEST_EQ_STR(root_table->far_string()->c_str(), "some far string");
TEST_EQ_STR(root_table->near_string()->c_str(), "some near string");
}
void Offset64Evolution() {
// Some common data for the tests.
const std::vector<uint8_t> data = { 1, 2, 3, 4 };
const std::vector<uint8_t> big_data = { 6, 7, 8, 9, 10 };
// Built V1 read V2
{
// Use the 32-bit builder since V1 doesn't have any 64-bit offsets.
FlatBufferBuilder builder;
builder.Finish(v1::CreateRootTableDirect(builder, 1234, &data));
// Use each version to get a view at the root table.
auto v1_root = v1::GetRootTable(builder.GetBufferPointer());
auto v2_root = v2::GetRootTable(builder.GetBufferPointer());
// Test field equivalents for fields common to V1 and V2.
TEST_EQ(v1_root->a(), v2_root->a());
TEST_EQ(v1_root->b(), v2_root->b());
TEST_EQ(v1_root->b()->Get(2), 3);
TEST_EQ(v2_root->b()->Get(2), 3);
// This field is added in V2, so it should be null since V1 couldn't have
// written it.
TEST_ASSERT(v2_root->big_vector() == nullptr);
}
// Built V2 read V1
{
// Use the 64-bit builder since V2 has 64-bit offsets.
FlatBufferBuilder64 builder;
builder.Finish(v2::CreateRootTableDirect(builder, 1234, &data, &big_data));
// Use each version to get a view at the root table.
auto v1_root = v1::GetRootTable(builder.GetBufferPointer());
auto v2_root = v2::GetRootTable(builder.GetBufferPointer());
// Test field equivalents for fields common to V1 and V2.
TEST_EQ(v1_root->a(), v2_root->a());
TEST_EQ(v1_root->b(), v2_root->b());
TEST_EQ(v1_root->b()->Get(2), 3);
TEST_EQ(v2_root->b()->Get(2), 3);
// Test that V2 can read the big vector, which V1 doesn't even have
// accessors for (i.e. v1_root->big_vector() doesn't exist).
TEST_ASSERT(v2_root->big_vector() != nullptr);
TEST_EQ(v2_root->big_vector()->size(), big_data.size());
TEST_EQ(v2_root->big_vector()->Get(2), 8);
}
// Built V2 read V1, bigger than max 32-bit buffer sized.
// This checks that even a large buffer can still be read by V1.
{
// Use the 64-bit builder since V2 has 64-bit offsets.
FlatBufferBuilder64 builder;
std::vector<uint8_t> giant_data;
giant_data.resize(1LL << 31);
giant_data[2] = 42;
builder.Finish(
v2::CreateRootTableDirect(builder, 1234, &data, &giant_data));
// Ensure the buffer is bigger than the 32-bit size limit for V1.
TEST_ASSERT(builder.GetSize() > FLATBUFFERS_MAX_BUFFER_SIZE);
// Use each version to get a view at the root table.
auto v1_root = v1::GetRootTable(builder.GetBufferPointer());
auto v2_root = v2::GetRootTable(builder.GetBufferPointer());
// Test field equivalents for fields common to V1 and V2.
TEST_EQ(v1_root->a(), v2_root->a());
TEST_EQ(v1_root->b(), v2_root->b());
TEST_EQ(v1_root->b()->Get(2), 3);
TEST_EQ(v2_root->b()->Get(2), 3);
// Test that V2 can read the big vector, which V1 doesn't even have
// accessors for (i.e. v1_root->big_vector() doesn't exist).
TEST_ASSERT(v2_root->big_vector() != nullptr);
TEST_EQ(v2_root->big_vector()->size(), giant_data.size());
TEST_EQ(v2_root->big_vector()->Get(2), 42);
}
}
void Offset64VectorOfStructs() {
FlatBufferBuilder64 builder;
std::vector<LeafStruct> far_leaves;
far_leaves.emplace_back(LeafStruct{ 123, 4.567 });
far_leaves.emplace_back(LeafStruct{ 987, 6.543 });
std::vector<LeafStruct> big_leaves;
big_leaves.emplace_back(LeafStruct{ 72, 72.8 });
big_leaves.emplace_back(LeafStruct{ 82, 82.8 });
big_leaves.emplace_back(LeafStruct{ 92, 92.8 });
// Add the two vectors of leaf structs.
const Offset<RootTable> root_table_offset =
CreateRootTableDirect(builder, nullptr, 0, nullptr, nullptr, nullptr,
nullptr, &far_leaves, &big_leaves);
// Finish the buffer.
builder.Finish(root_table_offset);
Verifier::Options options;
// Allow the verifier to verify 64-bit buffers.
options.max_size = FLATBUFFERS_MAX_64_BUFFER_SIZE;
options.assert = true;
Verifier verifier(builder.GetBufferPointer(), builder.GetSize(), options);
TEST_EQ(VerifyRootTableBuffer(verifier), true);
// Verify the data.
const RootTable *root_table = GetRootTable(builder.GetBufferPointer());
TEST_EQ(root_table->far_struct_vector()->size(), far_leaves.size());
TEST_EQ(root_table->far_struct_vector()->Get(0)->a(), 123);
TEST_EQ(root_table->far_struct_vector()->Get(0)->b(), 4.567);
TEST_EQ(root_table->far_struct_vector()->Get(1)->a(), 987);
TEST_EQ(root_table->far_struct_vector()->Get(1)->b(), 6.543);
TEST_EQ(root_table->big_struct_vector()->size(), big_leaves.size());
TEST_EQ(root_table->big_struct_vector()->Get(0)->a(), 72);
TEST_EQ(root_table->big_struct_vector()->Get(0)->b(), 72.8);
TEST_EQ(root_table->big_struct_vector()->Get(1)->a(), 82);
TEST_EQ(root_table->big_struct_vector()->Get(1)->b(), 82.8);
TEST_EQ(root_table->big_struct_vector()->Get(2)->a(), 92);
TEST_EQ(root_table->big_struct_vector()->Get(2)->b(), 92.8);
}
void Offset64SizePrefix() {
FlatBufferBuilder64 builder;
// First serialize a nested buffer.
const Offset<String> near_string_offset =
builder.CreateString("some near string");
// Finish by building the root table by passing in all the offsets.
const Offset<RootTable> root_table_offset =
CreateRootTable(builder, 0, 0, 0, 0, near_string_offset, 0);
// Finish the buffer.
FinishSizePrefixedRootTableBuffer(builder, root_table_offset);
TEST_EQ(GetPrefixedSize<uoffset64_t>(builder.GetBufferPointer()),
builder.GetSize() - sizeof(uoffset64_t));
Verifier::Options options;
// Allow the verifier to verify 64-bit buffers.
options.max_size = FLATBUFFERS_MAX_64_BUFFER_SIZE;
options.assert = true;
Verifier verifier(builder.GetBufferPointer(), builder.GetSize(), options);
TEST_EQ(VerifySizePrefixedRootTableBuffer(verifier), true);
const RootTable *root_table =
GetSizePrefixedRootTable(builder.GetBufferPointer());
// Verify the fields.
TEST_EQ_STR(root_table->near_string()->c_str(), "some near string");
}
void Offset64ManyVectors() {
FlatBufferBuilder64 builder;
// Setup some data to serialize.
std::vector<int8_t> data;
data.resize(20);
data.front() = 42;
data.back() = 18;
const size_t kNumVectors = 20;
// First serialize all the 64-bit address vectors. We need to store all the
// offsets to later add to a wrapper table. We cannot serialize one vector and
// then add it to a table immediately, as it would violate the strict ordering
// of putting all 64-bit things at the tail of the buffer.
std::array<Offset64<Vector<int8_t>>, kNumVectors> offsets_64bit;
for (size_t i = 0; i < kNumVectors; ++i) {
offsets_64bit[i] = builder.CreateVector64<Vector>(data);
}
// Create some unrelated, 64-bit offset value for later testing.
const Offset64<String> far_string_offset =
builder.CreateString<Offset64>("some far string");
// Now place all the offsets into their own wrapper tables. Again, we have to
// store the offsets before we can add them to the root table vector.
std::array<Offset<WrapperTable>, kNumVectors> offsets_wrapper;
for (size_t i = 0; i < kNumVectors; ++i) {
offsets_wrapper[i] = CreateWrapperTable(builder, offsets_64bit[i]);
}
// Now create the 32-bit vector that is stored in the root table.
// TODO(derekbailey): the array type wasn't auto deduced, see if that could be
// fixed.
const Offset<Vector<Offset<WrapperTable>>> many_vectors_offset =
builder.CreateVector<Offset<WrapperTable>>(offsets_wrapper);
// Finish by building using the root table builder, to exercise a different
// code path than the other tests.
RootTableBuilder root_table_builder(builder);
root_table_builder.add_many_vectors(many_vectors_offset);
root_table_builder.add_far_string(far_string_offset);
const Offset<RootTable> root_table_offset = root_table_builder.Finish();
// Finish the buffer.
FinishRootTableBuffer(builder, root_table_offset);
Verifier::Options options;
// Allow the verifier to verify 64-bit buffers.
options.max_size = FLATBUFFERS_MAX_64_BUFFER_SIZE;
options.assert = true;
Verifier verifier(builder.GetBufferPointer(), builder.GetSize(), options);
TEST_EQ(VerifyRootTableBuffer(verifier), true);
const RootTable *root_table = GetRootTable(builder.GetBufferPointer());
// Verify the fields.
TEST_EQ_STR(root_table->far_string()->c_str(), "some far string");
TEST_EQ(root_table->many_vectors()->size(), kNumVectors);
// Spot check one of the vectors.
TEST_EQ(root_table->many_vectors()->Get(12)->vector()->size(), 20);
TEST_EQ(root_table->many_vectors()->Get(12)->vector()->Get(0), 42);
TEST_EQ(root_table->many_vectors()->Get(12)->vector()->Get(19), 18);
}
} // namespace tests
} // namespace flatbuffers

View File

@ -0,0 +1,19 @@
#ifndef TESTS_64BIT_OFFSET64_TEST_H
#define TESTS_64BIT_OFFSET64_TEST_H
namespace flatbuffers {
namespace tests {
void Offset64Test();
void Offset64SerializedFirst();
void Offset64NestedFlatBuffer();
void Offset64CreateDirect();
void Offset64Evolution();
void Offset64VectorOfStructs();
void Offset64SizePrefix();
void Offset64ManyVectors();
} // namespace tests
} // namespace flatbuffers
#endif // TESTS_64BIT_OFFSET64_TEST_H

View File

@ -0,0 +1,74 @@
// Annotated Flatbuffer Binary
//
// Schema file: tests/64bit/test_64bit.fbs
// Binary file: tests/64bit/test_64bit.bin
header:
+0x00 | 1C 00 00 00 | UOffset32 | 0x0000001C (28) Loc: 0x1C | offset to root table `RootTable`
padding:
+0x04 | 00 00 00 00 | uint8_t[4] | .... | padding
vtable (RootTable):
+0x08 | 14 00 | uint16_t | 0x0014 (20) | size of this vtable
+0x0A | 34 00 | uint16_t | 0x0034 (52) | size of referring table
+0x0C | 04 00 | VOffset16 | 0x0004 (4) | offset to field `far_vector` (id: 0)
+0x0E | 10 00 | VOffset16 | 0x0010 (16) | offset to field `a` (id: 1)
+0x10 | 14 00 | VOffset16 | 0x0014 (20) | offset to field `far_string` (id: 2)
+0x12 | 24 00 | VOffset16 | 0x0024 (36) | offset to field `big_vector` (id: 3)
+0x14 | 20 00 | VOffset16 | 0x0020 (32) | offset to field `near_string` (id: 4)
+0x16 | 00 00 | VOffset16 | 0x0000 (0) | offset to field `nested_root` (id: 5) <null> (Vector64)
+0x18 | 00 00 | VOffset16 | 0x0000 (0) | offset to field `far_struct_vector` (id: 6) <null> (Vector)
+0x1A | 2C 00 | VOffset16 | 0x002C (44) | offset to field `big_struct_vector` (id: 7)
root_table (RootTable):
+0x1C | 14 00 00 00 | SOffset32 | 0x00000014 (20) Loc: 0x08 | offset to vtable
+0x20 | D0 00 00 00 00 00 00 00 | UOffset64 | 0x00000000000000D0 (208) Loc: 0xF0 | offset to field `far_vector` (vector)
+0x28 | 00 00 00 00 | uint8_t[4] | .... | padding
+0x2C | D2 04 00 00 | uint32_t | 0x000004D2 (1234) | table field `a` (Int)
+0x30 | 8C 00 00 00 00 00 00 00 | UOffset64 | 0x000000000000008C (140) Loc: 0xBC | offset to field `far_string` (string)
+0x38 | 00 00 00 00 | uint8_t[4] | .... | padding
+0x3C | 40 00 00 00 | UOffset32 | 0x00000040 (64) Loc: 0x7C | offset to field `near_string` (string)
+0x40 | 70 00 00 00 00 00 00 00 | UOffset64 | 0x0000000000000070 (112) Loc: 0xB0 | offset to field `big_vector` (vector64)
+0x48 | 08 00 00 00 00 00 00 00 | UOffset64 | 0x0000000000000008 (8) Loc: 0x50 | offset to field `big_struct_vector` (vector64)
vector64 (RootTable.big_struct_vector):
+0x50 | 02 00 00 00 00 00 00 00 | uint64_t | 0x0000000000000002 (2) | length of vector (# items)
+0x58 | 0C 00 00 00 | uint32_t | 0x0000000C (12) | struct field `[0].a` of 'LeafStruct' (Int)
<4 regions omitted>
+0x70 | 33 33 33 33 33 33 22 40 | double | 0x4022333333333333 (9.1) | struct field `[1].b` of 'LeafStruct' (Double)
padding:
+0x78 | 00 00 00 00 | uint8_t[4] | .... | padding
string (RootTable.near_string):
+0x7C | 2F 00 00 00 | uint32_t | 0x0000002F (47) | length of string
+0x80 | 74 68 69 73 20 69 73 20 | char[47] | this is | string literal
+0x88 | 61 20 6E 65 61 72 20 73 | | a near s
+0x90 | 74 72 69 6E 67 20 77 68 | | tring wh
+0x98 | 69 63 68 20 68 61 73 20 | | ich has
+0xA0 | 61 20 33 32 2D 62 69 74 | | a 32-bit
+0xA8 | 20 6F 66 66 73 65 74 | | offset
+0xAF | 00 | char | 0x00 (0) | string terminator
vector64 (RootTable.big_vector):
+0xB0 | 04 00 00 00 00 00 00 00 | uint64_t | 0x0000000000000004 (4) | length of vector (# items)
+0xB8 | 05 | uint8_t | 0x05 (5) | value[0]
<2 regions omitted>
+0xBB | 08 | uint8_t | 0x08 (8) | value[3]
string (RootTable.far_string):
+0xBC | 2E 00 00 00 | uint32_t | 0x0000002E (46) | length of string
+0xC0 | 74 68 69 73 20 69 73 20 | char[46] | this is | string literal
+0xC8 | 61 20 66 61 72 20 73 74 | | a far st
+0xD0 | 72 69 6E 67 20 77 68 69 | | ring whi
+0xD8 | 63 68 20 68 61 73 20 61 | | ch has a
+0xE0 | 20 36 34 2D 62 69 74 20 | | 64-bit
+0xE8 | 6F 66 66 73 65 74 | | offset
+0xEE | 00 | char | 0x00 (0) | string terminator
vector (RootTable.far_vector):
+0xF0 | 03 00 00 00 | uint32_t | 0x00000003 (3) | length of vector (# items)
+0xF4 | 01 | uint8_t | 0x01 (1) | value[0]
+0xF5 | 02 | uint8_t | 0x02 (2) | value[1]
+0xF6 | 03 | uint8_t | 0x03 (3) | value[2]

BIN
tests/64bit/test_64bit.bfbs Normal file

Binary file not shown.

BIN
tests/64bit/test_64bit.bin Normal file

Binary file not shown.

View File

@ -0,0 +1,49 @@
struct LeafStruct {
a:int;
b:double;
}
table WrapperTable {
// A normal 32-bit sized vector that could be very far away (64-bit address).
vector:[int8] (offset64);
}
table RootTable {
// A normal 32-bit sized vector, that could be very far away (64-bit address).
far_vector:[ubyte] (offset64);
// An inplace value just to check that vtable offsets are correct.
a:int;
// A normal 32-bit sized string, that could be very far away (64-bit address).
far_string:string (offset64);
// A big 64-bit sized vector, that could be very far away (64-bit address).
big_vector:[ubyte] (vector64);
// A normal 32-bit sized string that is no far away (32-bit address).
near_string:string;
// A big 64-bit sized vector that is a nested flatbuffers (64-bit address).
nested_root:[ubyte] (vector64, nested_flatbuffer: "RootTable");
// A normal 32-bit size vector of structs, that could be very far away
// (64-bit address)
far_struct_vector:[LeafStruct] (offset64);
// A big 64-bit size vector of structs that could be very far away
// (64-bit address)
big_struct_vector:[LeafStruct] (vector64);
// A normal 32-bit size vector of tables. Currently 64-bit vectors don't
// support tables as it would require serializing a table (32-bit) before the
// vector (64-bit), which is not allowed.
//
// This demonstrates how you could have many vectors in the buffer, by
// effectively having a vector of 64-bit vectors. The IDL doesn't support
// nested vecotrs (e.g.: [[type]] ), so going through a wrapper table allows
// this.
many_vectors:[WrapperTable];
}
root_type RootTable;

View File

@ -0,0 +1,17 @@
{
"far_vector": [1, 2, 3],
"a": 1234,
"far_string": "this is a far string which has a 64-bit offset",
"big_vector": [5, 6, 7, 8],
"near_string": "this is a near string which has a 32-bit offset",
"big_struct_vector": [
{
"a": 12,
"b": 3.456
},
{
"a": 78,
"b": 9.10
}
]
}

View File

@ -0,0 +1,93 @@
// automatically generated by the FlatBuffers compiler, do not modify
#ifndef FLATBUFFERS_GENERATED_TEST64BIT_BFBS_H_
#define FLATBUFFERS_GENERATED_TEST64BIT_BFBS_H_
#include "flatbuffers/flatbuffers.h"
// Ensure the included flatbuffers.h is the same version as when this file was
// generated, otherwise it may not be compatible.
static_assert(FLATBUFFERS_VERSION_MAJOR == 23 &&
FLATBUFFERS_VERSION_MINOR == 5 &&
FLATBUFFERS_VERSION_REVISION == 8,
"Non-compatible flatbuffers version included");
struct RootTableBinarySchema {
static const uint8_t *data() {
// Buffer containing the binary schema.
static const uint8_t bfbsData[1180] = {
0x1C,0x00,0x00,0x00,0x42,0x46,0x42,0x53,0x14,0x00,0x20,0x00,0x04,0x00,0x08,0x00,0x0C,0x00,0x10,0x00,
0x14,0x00,0x18,0x00,0x00,0x00,0x1C,0x00,0x14,0x00,0x00,0x00,0x34,0x00,0x00,0x00,0x2C,0x00,0x00,0x00,
0x20,0x00,0x00,0x00,0x14,0x00,0x00,0x00,0x54,0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x2C,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x60,0x03,0x00,0x00,0x28,0x00,0x00,0x00,0xBC,0x02,0x00,0x00,
0x01,0x00,0x00,0x00,0x0C,0x00,0x00,0x00,0x08,0x00,0x0C,0x00,0x04,0x00,0x08,0x00,0x08,0x00,0x00,0x00,
0x5C,0x03,0x00,0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x7C,0xFD,0xFF,0xFF,0x38,0x00,0x00,0x00,
0x0C,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x40,0x03,0x00,0x00,0x09,0x00,0x00,0x00,0x1C,0x02,0x00,0x00,
0x68,0x00,0x00,0x00,0x80,0x01,0x00,0x00,0xE0,0x01,0x00,0x00,0xAC,0x00,0x00,0x00,0x2C,0x02,0x00,0x00,
0x1C,0x00,0x00,0x00,0x3C,0x01,0x00,0x00,0xE8,0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x52,0x6F,0x6F,0x74,
0x54,0x61,0x62,0x6C,0x65,0x00,0x00,0x00,0xF8,0xFE,0xFF,0xFF,0x00,0x00,0x00,0x01,0x08,0x00,0x14,0x00,
0x18,0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x78,0xFF,0xFF,0xFF,0x00,0x00,0x0E,0x0F,0x02,0x00,0x00,0x00,
0x04,0x00,0x00,0x00,0x0C,0x00,0x00,0x00,0x6D,0x61,0x6E,0x79,0x5F,0x76,0x65,0x63,0x74,0x6F,0x72,0x73,
0x00,0x00,0x00,0x00,0xA0,0xFE,0xFF,0xFF,0x00,0x00,0x01,0x01,0x07,0x00,0x12,0x00,0x2C,0x00,0x00,0x00,
0x14,0x00,0x00,0x00,0x10,0x00,0x14,0x00,0x06,0x00,0x07,0x00,0x08,0x00,0x00,0x00,0x0C,0x00,0x10,0x00,
0x10,0x00,0x00,0x00,0x00,0x00,0x12,0x0F,0x00,0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x04,0x00,0x00,0x00,
0x11,0x00,0x00,0x00,0x62,0x69,0x67,0x5F,0x73,0x74,0x72,0x75,0x63,0x74,0x5F,0x76,0x65,0x63,0x74,0x6F,
0x72,0x00,0x00,0x00,0xF0,0xFE,0xFF,0xFF,0x00,0x00,0x01,0x01,0x06,0x00,0x10,0x00,0x28,0x00,0x00,0x00,
0x14,0x00,0x00,0x00,0x10,0x00,0x10,0x00,0x06,0x00,0x07,0x00,0x08,0x00,0x00,0x00,0x00,0x00,0x0C,0x00,
0x10,0x00,0x00,0x00,0x00,0x00,0x0E,0x0F,0x00,0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x11,0x00,0x00,0x00,
0x66,0x61,0x72,0x5F,0x73,0x74,0x72,0x75,0x63,0x74,0x5F,0x76,0x65,0x63,0x74,0x6F,0x72,0x00,0x00,0x00,
0x3C,0xFF,0xFF,0xFF,0x00,0x00,0x01,0x01,0x05,0x00,0x0E,0x00,0x18,0x00,0x00,0x00,0x04,0x00,0x00,0x00,
0x80,0xFF,0xFF,0xFF,0x00,0x00,0x12,0x04,0x08,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x0B,0x00,0x00,0x00,
0x6E,0x65,0x73,0x74,0x65,0x64,0x5F,0x72,0x6F,0x6F,0x74,0x00,0x1C,0x00,0x14,0x00,0x0C,0x00,0x10,0x00,
0x08,0x00,0x0A,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x00,
0x1C,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x04,0x00,0x0C,0x00,0x14,0x00,0x00,0x00,0x04,0x00,0x00,0x00,
0x90,0xFD,0xFF,0xFF,0x00,0x00,0x00,0x0D,0x01,0x00,0x00,0x00,0x0B,0x00,0x00,0x00,0x6E,0x65,0x61,0x72,
0x5F,0x73,0x74,0x72,0x69,0x6E,0x67,0x00,0xBC,0xFF,0xFF,0xFF,0x00,0x00,0x01,0x01,0x03,0x00,0x0A,0x00,
0x28,0x00,0x00,0x00,0x14,0x00,0x00,0x00,0x10,0x00,0x10,0x00,0x06,0x00,0x07,0x00,0x00,0x00,0x00,0x00,
0x08,0x00,0x0C,0x00,0x10,0x00,0x00,0x00,0x00,0x00,0x12,0x04,0x08,0x00,0x00,0x00,0x01,0x00,0x00,0x00,
0x0A,0x00,0x00,0x00,0x62,0x69,0x67,0x5F,0x76,0x65,0x63,0x74,0x6F,0x72,0x00,0x00,0x20,0x00,0x14,0x00,
0x0C,0x00,0x10,0x00,0x08,0x00,0x0A,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x06,0x00,0x00,0x00,0x07,0x00,0x20,0x00,0x00,0x00,0x00,0x00,0x01,0x01,0x02,0x00,0x08,0x00,
0x14,0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x24,0xFE,0xFF,0xFF,0x00,0x00,0x00,0x0D,0x01,0x00,0x00,0x00,
0x0A,0x00,0x00,0x00,0x66,0x61,0x72,0x5F,0x73,0x74,0x72,0x69,0x6E,0x67,0x00,0x00,0xB0,0xFE,0xFF,0xFF,
0x01,0x00,0x06,0x00,0x14,0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x50,0xFE,0xFF,0xFF,0x00,0x00,0x00,0x07,
0x01,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x61,0x00,0x00,0x00,0x90,0xFF,0xFF,0xFF,0x01,0x01,0x04,0x00,
0x14,0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x70,0xFF,0xFF,0xFF,0x00,0x00,0x0E,0x04,0x01,0x00,0x00,0x00,
0x0A,0x00,0x00,0x00,0x66,0x61,0x72,0x5F,0x76,0x65,0x63,0x74,0x6F,0x72,0x00,0x00,0x14,0x00,0x14,0x00,
0x04,0x00,0x08,0x00,0x00,0x00,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x14,0x00,0x00,0x00,
0x18,0x00,0x00,0x00,0x0C,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0xA8,0x00,0x00,0x00,0x01,0x00,0x00,0x00,
0x38,0x00,0x00,0x00,0x0C,0x00,0x00,0x00,0x57,0x72,0x61,0x70,0x70,0x65,0x72,0x54,0x61,0x62,0x6C,0x65,
0x00,0x00,0x00,0x00,0x20,0x00,0x10,0x00,0x08,0x00,0x0C,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x05,0x00,0x20,0x00,0x00,0x00,
0x01,0x01,0x04,0x00,0x24,0x00,0x00,0x00,0x14,0x00,0x00,0x00,0x10,0x00,0x0C,0x00,0x06,0x00,0x07,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x10,0x00,0x00,0x00,0x00,0x00,0x0E,0x03,0x01,0x00,0x00,0x00,
0x06,0x00,0x00,0x00,0x76,0x65,0x63,0x74,0x6F,0x72,0x00,0x00,0x14,0x00,0x1C,0x00,0x08,0x00,0x0C,0x00,
0x07,0x00,0x10,0x00,0x14,0x00,0x00,0x00,0x00,0x00,0x18,0x00,0x14,0x00,0x00,0x00,0x00,0x00,0x00,0x01,
0x38,0x00,0x00,0x00,0x28,0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x04,0x00,0x00,0x00,
0x10,0x00,0x00,0x00,0x2F,0x2F,0x74,0x65,0x73,0x74,0x5F,0x36,0x34,0x62,0x69,0x74,0x2E,0x66,0x62,0x73,
0x00,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x78,0x00,0x00,0x00,0x20,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,
0x4C,0x65,0x61,0x66,0x53,0x74,0x72,0x75,0x63,0x74,0x00,0x00,0x0C,0x00,0x10,0x00,0x08,0x00,0x0C,0x00,
0x04,0x00,0x06,0x00,0x0C,0x00,0x00,0x00,0x01,0x00,0x08,0x00,0x28,0x00,0x00,0x00,0x14,0x00,0x00,0x00,
0x10,0x00,0x10,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x0C,0x00,0x10,0x00,0x00,0x00,
0x00,0x00,0x00,0x0C,0x08,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x62,0x00,0x1E,0x00,
0x10,0x00,0x08,0x00,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x06,0x00,0x1E,0x00,0x00,0x00,0x00,0x00,0x04,0x00,0x24,0x00,0x00,0x00,
0x14,0x00,0x00,0x00,0x10,0x00,0x0C,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,
0x10,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x01,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x61,0x00,0x00,0x00
};
return bfbsData;
}
static size_t size() {
return 1180;
}
const uint8_t *begin() {
return data();
}
const uint8_t *end() {
return data() + size();
}
};
#endif // FLATBUFFERS_GENERATED_TEST64BIT_BFBS_H_

View File

@ -0,0 +1,625 @@
// automatically generated by the FlatBuffers compiler, do not modify
#ifndef FLATBUFFERS_GENERATED_TEST64BIT_H_
#define FLATBUFFERS_GENERATED_TEST64BIT_H_
#include "flatbuffers/flatbuffers.h"
// Ensure the included flatbuffers.h is the same version as when this file was
// generated, otherwise it may not be compatible.
static_assert(FLATBUFFERS_VERSION_MAJOR == 23 &&
FLATBUFFERS_VERSION_MINOR == 5 &&
FLATBUFFERS_VERSION_REVISION == 8,
"Non-compatible flatbuffers version included");
// For access to the binary schema that produced this file.
#include "test_64bit_bfbs_generated.h"
struct LeafStruct;
struct WrapperTable;
struct WrapperTableBuilder;
struct WrapperTableT;
struct RootTable;
struct RootTableBuilder;
struct RootTableT;
bool operator==(const LeafStruct &lhs, const LeafStruct &rhs);
bool operator!=(const LeafStruct &lhs, const LeafStruct &rhs);
bool operator==(const WrapperTableT &lhs, const WrapperTableT &rhs);
bool operator!=(const WrapperTableT &lhs, const WrapperTableT &rhs);
bool operator==(const RootTableT &lhs, const RootTableT &rhs);
bool operator!=(const RootTableT &lhs, const RootTableT &rhs);
inline const ::flatbuffers::TypeTable *LeafStructTypeTable();
inline const ::flatbuffers::TypeTable *WrapperTableTypeTable();
inline const ::flatbuffers::TypeTable *RootTableTypeTable();
FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(8) LeafStruct FLATBUFFERS_FINAL_CLASS {
private:
int32_t a_;
int32_t padding0__;
double b_;
public:
static const ::flatbuffers::TypeTable *MiniReflectTypeTable() {
return LeafStructTypeTable();
}
LeafStruct()
: a_(0),
padding0__(0),
b_(0) {
(void)padding0__;
}
LeafStruct(int32_t _a, double _b)
: a_(::flatbuffers::EndianScalar(_a)),
padding0__(0),
b_(::flatbuffers::EndianScalar(_b)) {
(void)padding0__;
}
int32_t a() const {
return ::flatbuffers::EndianScalar(a_);
}
void mutate_a(int32_t _a) {
::flatbuffers::WriteScalar(&a_, _a);
}
double b() const {
return ::flatbuffers::EndianScalar(b_);
}
void mutate_b(double _b) {
::flatbuffers::WriteScalar(&b_, _b);
}
};
FLATBUFFERS_STRUCT_END(LeafStruct, 16);
inline bool operator==(const LeafStruct &lhs, const LeafStruct &rhs) {
return
(lhs.a() == rhs.a()) &&
(lhs.b() == rhs.b());
}
inline bool operator!=(const LeafStruct &lhs, const LeafStruct &rhs) {
return !(lhs == rhs);
}
struct WrapperTableT : public ::flatbuffers::NativeTable {
typedef WrapperTable TableType;
std::vector<int8_t> vector{};
};
struct WrapperTable FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table {
typedef WrapperTableT NativeTableType;
typedef WrapperTableBuilder Builder;
typedef RootTableBinarySchema BinarySchema;
static const ::flatbuffers::TypeTable *MiniReflectTypeTable() {
return WrapperTableTypeTable();
}
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_VECTOR = 4
};
const ::flatbuffers::Vector<int8_t> *vector() const {
return GetPointer64<const ::flatbuffers::Vector<int8_t> *>(VT_VECTOR);
}
::flatbuffers::Vector<int8_t> *mutable_vector() {
return GetPointer64<::flatbuffers::Vector<int8_t> *>(VT_VECTOR);
}
bool Verify(::flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyOffset64(verifier, VT_VECTOR) &&
verifier.VerifyVector(vector()) &&
verifier.EndTable();
}
WrapperTableT *UnPack(const ::flatbuffers::resolver_function_t *_resolver = nullptr) const;
void UnPackTo(WrapperTableT *_o, const ::flatbuffers::resolver_function_t *_resolver = nullptr) const;
static ::flatbuffers::Offset<WrapperTable> Pack(::flatbuffers::FlatBufferBuilder64 &_fbb, const WrapperTableT* _o, const ::flatbuffers::rehasher_function_t *_rehasher = nullptr);
};
struct WrapperTableBuilder {
typedef WrapperTable Table;
::flatbuffers::FlatBufferBuilder64 &fbb_;
::flatbuffers::uoffset_t start_;
void add_vector(::flatbuffers::Offset64<::flatbuffers::Vector<int8_t>> vector) {
fbb_.AddOffset(WrapperTable::VT_VECTOR, vector);
}
explicit WrapperTableBuilder(::flatbuffers::FlatBufferBuilder64 &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
::flatbuffers::Offset<WrapperTable> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = ::flatbuffers::Offset<WrapperTable>(end);
return o;
}
};
inline ::flatbuffers::Offset<WrapperTable> CreateWrapperTable(
::flatbuffers::FlatBufferBuilder64 &_fbb,
::flatbuffers::Offset64<::flatbuffers::Vector<int8_t>> vector = 0) {
WrapperTableBuilder builder_(_fbb);
builder_.add_vector(vector);
return builder_.Finish();
}
inline ::flatbuffers::Offset<WrapperTable> CreateWrapperTableDirect(
::flatbuffers::FlatBufferBuilder64 &_fbb,
const std::vector<int8_t> *vector = nullptr) {
auto vector__ = vector ? _fbb.CreateVector64<::flatbuffers::Vector>(*vector) : 0;
return CreateWrapperTable(
_fbb,
vector__);
}
::flatbuffers::Offset<WrapperTable> CreateWrapperTable(::flatbuffers::FlatBufferBuilder64 &_fbb, const WrapperTableT *_o, const ::flatbuffers::rehasher_function_t *_rehasher = nullptr);
struct RootTableT : public ::flatbuffers::NativeTable {
typedef RootTable TableType;
std::vector<uint8_t> far_vector{};
int32_t a = 0;
std::string far_string{};
std::vector<uint8_t> big_vector{};
std::string near_string{};
std::vector<uint8_t> nested_root{};
std::vector<LeafStruct> far_struct_vector{};
std::vector<LeafStruct> big_struct_vector{};
std::vector<std::unique_ptr<WrapperTableT>> many_vectors{};
RootTableT() = default;
RootTableT(const RootTableT &o);
RootTableT(RootTableT&&) FLATBUFFERS_NOEXCEPT = default;
RootTableT &operator=(RootTableT o) FLATBUFFERS_NOEXCEPT;
};
struct RootTable FLATBUFFERS_FINAL_CLASS : private ::flatbuffers::Table {
typedef RootTableT NativeTableType;
typedef RootTableBuilder Builder;
typedef RootTableBinarySchema BinarySchema;
static const ::flatbuffers::TypeTable *MiniReflectTypeTable() {
return RootTableTypeTable();
}
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_FAR_VECTOR = 4,
VT_A = 6,
VT_FAR_STRING = 8,
VT_BIG_VECTOR = 10,
VT_NEAR_STRING = 12,
VT_NESTED_ROOT = 14,
VT_FAR_STRUCT_VECTOR = 16,
VT_BIG_STRUCT_VECTOR = 18,
VT_MANY_VECTORS = 20
};
const ::flatbuffers::Vector<uint8_t> *far_vector() const {
return GetPointer64<const ::flatbuffers::Vector<uint8_t> *>(VT_FAR_VECTOR);
}
::flatbuffers::Vector<uint8_t> *mutable_far_vector() {
return GetPointer64<::flatbuffers::Vector<uint8_t> *>(VT_FAR_VECTOR);
}
int32_t a() const {
return GetField<int32_t>(VT_A, 0);
}
bool mutate_a(int32_t _a = 0) {
return SetField<int32_t>(VT_A, _a, 0);
}
const ::flatbuffers::String *far_string() const {
return GetPointer64<const ::flatbuffers::String *>(VT_FAR_STRING);
}
::flatbuffers::String *mutable_far_string() {
return GetPointer64<::flatbuffers::String *>(VT_FAR_STRING);
}
const ::flatbuffers::Vector64<uint8_t> *big_vector() const {
return GetPointer64<const ::flatbuffers::Vector64<uint8_t> *>(VT_BIG_VECTOR);
}
::flatbuffers::Vector64<uint8_t> *mutable_big_vector() {
return GetPointer64<::flatbuffers::Vector64<uint8_t> *>(VT_BIG_VECTOR);
}
const ::flatbuffers::String *near_string() const {
return GetPointer<const ::flatbuffers::String *>(VT_NEAR_STRING);
}
::flatbuffers::String *mutable_near_string() {
return GetPointer<::flatbuffers::String *>(VT_NEAR_STRING);
}
const ::flatbuffers::Vector64<uint8_t> *nested_root() const {
return GetPointer64<const ::flatbuffers::Vector64<uint8_t> *>(VT_NESTED_ROOT);
}
::flatbuffers::Vector64<uint8_t> *mutable_nested_root() {
return GetPointer64<::flatbuffers::Vector64<uint8_t> *>(VT_NESTED_ROOT);
}
const RootTable *nested_root_nested_root() const {
const auto _f = nested_root();
return _f ? ::flatbuffers::GetRoot<RootTable>(_f->Data())
: nullptr;
}
const ::flatbuffers::Vector<const LeafStruct *> *far_struct_vector() const {
return GetPointer64<const ::flatbuffers::Vector<const LeafStruct *> *>(VT_FAR_STRUCT_VECTOR);
}
::flatbuffers::Vector<const LeafStruct *> *mutable_far_struct_vector() {
return GetPointer64<::flatbuffers::Vector<const LeafStruct *> *>(VT_FAR_STRUCT_VECTOR);
}
const ::flatbuffers::Vector64<const LeafStruct *> *big_struct_vector() const {
return GetPointer64<const ::flatbuffers::Vector64<const LeafStruct *> *>(VT_BIG_STRUCT_VECTOR);
}
::flatbuffers::Vector64<const LeafStruct *> *mutable_big_struct_vector() {
return GetPointer64<::flatbuffers::Vector64<const LeafStruct *> *>(VT_BIG_STRUCT_VECTOR);
}
const ::flatbuffers::Vector<::flatbuffers::Offset<WrapperTable>> *many_vectors() const {
return GetPointer<const ::flatbuffers::Vector<::flatbuffers::Offset<WrapperTable>> *>(VT_MANY_VECTORS);
}
::flatbuffers::Vector<::flatbuffers::Offset<WrapperTable>> *mutable_many_vectors() {
return GetPointer<::flatbuffers::Vector<::flatbuffers::Offset<WrapperTable>> *>(VT_MANY_VECTORS);
}
bool Verify(::flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyOffset64(verifier, VT_FAR_VECTOR) &&
verifier.VerifyVector(far_vector()) &&
VerifyField<int32_t>(verifier, VT_A, 4) &&
VerifyOffset64(verifier, VT_FAR_STRING) &&
verifier.VerifyString(far_string()) &&
VerifyOffset64(verifier, VT_BIG_VECTOR) &&
verifier.VerifyVector(big_vector()) &&
VerifyOffset(verifier, VT_NEAR_STRING) &&
verifier.VerifyString(near_string()) &&
VerifyOffset64(verifier, VT_NESTED_ROOT) &&
verifier.VerifyVector(nested_root()) &&
verifier.VerifyNestedFlatBuffer<RootTable>(nested_root(), nullptr) &&
VerifyOffset64(verifier, VT_FAR_STRUCT_VECTOR) &&
verifier.VerifyVector(far_struct_vector()) &&
VerifyOffset64(verifier, VT_BIG_STRUCT_VECTOR) &&
verifier.VerifyVector(big_struct_vector()) &&
VerifyOffset(verifier, VT_MANY_VECTORS) &&
verifier.VerifyVector(many_vectors()) &&
verifier.VerifyVectorOfTables(many_vectors()) &&
verifier.EndTable();
}
RootTableT *UnPack(const ::flatbuffers::resolver_function_t *_resolver = nullptr) const;
void UnPackTo(RootTableT *_o, const ::flatbuffers::resolver_function_t *_resolver = nullptr) const;
static ::flatbuffers::Offset<RootTable> Pack(::flatbuffers::FlatBufferBuilder64 &_fbb, const RootTableT* _o, const ::flatbuffers::rehasher_function_t *_rehasher = nullptr);
};
struct RootTableBuilder {
typedef RootTable Table;
::flatbuffers::FlatBufferBuilder64 &fbb_;
::flatbuffers::uoffset_t start_;
void add_far_vector(::flatbuffers::Offset64<::flatbuffers::Vector<uint8_t>> far_vector) {
fbb_.AddOffset(RootTable::VT_FAR_VECTOR, far_vector);
}
void add_a(int32_t a) {
fbb_.AddElement<int32_t>(RootTable::VT_A, a, 0);
}
void add_far_string(::flatbuffers::Offset64<::flatbuffers::String> far_string) {
fbb_.AddOffset(RootTable::VT_FAR_STRING, far_string);
}
void add_big_vector(::flatbuffers::Offset64<::flatbuffers::Vector64<uint8_t>> big_vector) {
fbb_.AddOffset(RootTable::VT_BIG_VECTOR, big_vector);
}
void add_near_string(::flatbuffers::Offset<::flatbuffers::String> near_string) {
fbb_.AddOffset(RootTable::VT_NEAR_STRING, near_string);
}
void add_nested_root(::flatbuffers::Offset64<::flatbuffers::Vector64<uint8_t>> nested_root) {
fbb_.AddOffset(RootTable::VT_NESTED_ROOT, nested_root);
}
void add_far_struct_vector(::flatbuffers::Offset64<::flatbuffers::Vector<const LeafStruct *>> far_struct_vector) {
fbb_.AddOffset(RootTable::VT_FAR_STRUCT_VECTOR, far_struct_vector);
}
void add_big_struct_vector(::flatbuffers::Offset64<::flatbuffers::Vector64<const LeafStruct *>> big_struct_vector) {
fbb_.AddOffset(RootTable::VT_BIG_STRUCT_VECTOR, big_struct_vector);
}
void add_many_vectors(::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset<WrapperTable>>> many_vectors) {
fbb_.AddOffset(RootTable::VT_MANY_VECTORS, many_vectors);
}
explicit RootTableBuilder(::flatbuffers::FlatBufferBuilder64 &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
::flatbuffers::Offset<RootTable> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = ::flatbuffers::Offset<RootTable>(end);
return o;
}
};
inline ::flatbuffers::Offset<RootTable> CreateRootTable(
::flatbuffers::FlatBufferBuilder64 &_fbb,
::flatbuffers::Offset64<::flatbuffers::Vector<uint8_t>> far_vector = 0,
int32_t a = 0,
::flatbuffers::Offset64<::flatbuffers::String> far_string = 0,
::flatbuffers::Offset64<::flatbuffers::Vector64<uint8_t>> big_vector = 0,
::flatbuffers::Offset<::flatbuffers::String> near_string = 0,
::flatbuffers::Offset64<::flatbuffers::Vector64<uint8_t>> nested_root = 0,
::flatbuffers::Offset64<::flatbuffers::Vector<const LeafStruct *>> far_struct_vector = 0,
::flatbuffers::Offset64<::flatbuffers::Vector64<const LeafStruct *>> big_struct_vector = 0,
::flatbuffers::Offset<::flatbuffers::Vector<::flatbuffers::Offset<WrapperTable>>> many_vectors = 0) {
RootTableBuilder builder_(_fbb);
builder_.add_big_struct_vector(big_struct_vector);
builder_.add_nested_root(nested_root);
builder_.add_big_vector(big_vector);
builder_.add_many_vectors(many_vectors);
builder_.add_far_struct_vector(far_struct_vector);
builder_.add_near_string(near_string);
builder_.add_far_string(far_string);
builder_.add_a(a);
builder_.add_far_vector(far_vector);
return builder_.Finish();
}
inline ::flatbuffers::Offset<RootTable> CreateRootTableDirect(
::flatbuffers::FlatBufferBuilder64 &_fbb,
const std::vector<uint8_t> *far_vector = nullptr,
int32_t a = 0,
const char *far_string = nullptr,
const std::vector<uint8_t> *big_vector = nullptr,
const char *near_string = nullptr,
const std::vector<uint8_t> *nested_root = nullptr,
const std::vector<LeafStruct> *far_struct_vector = nullptr,
const std::vector<LeafStruct> *big_struct_vector = nullptr,
const std::vector<::flatbuffers::Offset<WrapperTable>> *many_vectors = nullptr) {
auto far_vector__ = far_vector ? _fbb.CreateVector64<::flatbuffers::Vector>(*far_vector) : 0;
auto far_string__ = far_string ? _fbb.CreateString<::flatbuffers::Offset64>(far_string) : 0;
auto big_vector__ = big_vector ? _fbb.CreateVector64(*big_vector) : 0;
auto nested_root__ = nested_root ? _fbb.CreateVector64(*nested_root) : 0;
auto far_struct_vector__ = far_struct_vector ? _fbb.CreateVectorOfStructs64<::flatbuffers::Vector>(*far_struct_vector) : 0;
auto big_struct_vector__ = big_struct_vector ? _fbb.CreateVectorOfStructs64(*big_struct_vector) : 0;
auto near_string__ = near_string ? _fbb.CreateString(near_string) : 0;
auto many_vectors__ = many_vectors ? _fbb.CreateVector<::flatbuffers::Offset<WrapperTable>>(*many_vectors) : 0;
return CreateRootTable(
_fbb,
far_vector__,
a,
far_string__,
big_vector__,
near_string__,
nested_root__,
far_struct_vector__,
big_struct_vector__,
many_vectors__);
}
::flatbuffers::Offset<RootTable> CreateRootTable(::flatbuffers::FlatBufferBuilder64 &_fbb, const RootTableT *_o, const ::flatbuffers::rehasher_function_t *_rehasher = nullptr);
inline bool operator==(const WrapperTableT &lhs, const WrapperTableT &rhs) {
return
(lhs.vector == rhs.vector);
}
inline bool operator!=(const WrapperTableT &lhs, const WrapperTableT &rhs) {
return !(lhs == rhs);
}
inline WrapperTableT *WrapperTable::UnPack(const ::flatbuffers::resolver_function_t *_resolver) const {
auto _o = std::unique_ptr<WrapperTableT>(new WrapperTableT());
UnPackTo(_o.get(), _resolver);
return _o.release();
}
inline void WrapperTable::UnPackTo(WrapperTableT *_o, const ::flatbuffers::resolver_function_t *_resolver) const {
(void)_o;
(void)_resolver;
{ auto _e = vector(); if (_e) { _o->vector.resize(_e->size()); std::copy(_e->begin(), _e->end(), _o->vector.begin()); } }
}
inline ::flatbuffers::Offset<WrapperTable> WrapperTable::Pack(::flatbuffers::FlatBufferBuilder64 &_fbb, const WrapperTableT* _o, const ::flatbuffers::rehasher_function_t *_rehasher) {
return CreateWrapperTable(_fbb, _o, _rehasher);
}
inline ::flatbuffers::Offset<WrapperTable> CreateWrapperTable(::flatbuffers::FlatBufferBuilder64 &_fbb, const WrapperTableT *_o, const ::flatbuffers::rehasher_function_t *_rehasher) {
(void)_rehasher;
(void)_o;
struct _VectorArgs { ::flatbuffers::FlatBufferBuilder64 *__fbb; const WrapperTableT* __o; const ::flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
auto _vector = _o->vector.size() ? _fbb.CreateVector64<::flatbuffers::Vector>(_o->vector) : 0;
return CreateWrapperTable(
_fbb,
_vector);
}
inline bool operator==(const RootTableT &lhs, const RootTableT &rhs) {
return
(lhs.far_vector == rhs.far_vector) &&
(lhs.a == rhs.a) &&
(lhs.far_string == rhs.far_string) &&
(lhs.big_vector == rhs.big_vector) &&
(lhs.near_string == rhs.near_string) &&
(lhs.nested_root == rhs.nested_root) &&
(lhs.far_struct_vector == rhs.far_struct_vector) &&
(lhs.big_struct_vector == rhs.big_struct_vector) &&
(lhs.many_vectors.size() == rhs.many_vectors.size() && std::equal(lhs.many_vectors.cbegin(), lhs.many_vectors.cend(), rhs.many_vectors.cbegin(), [](std::unique_ptr<WrapperTableT> const &a, std::unique_ptr<WrapperTableT> const &b) { return (a == b) || (a && b && *a == *b); }));
}
inline bool operator!=(const RootTableT &lhs, const RootTableT &rhs) {
return !(lhs == rhs);
}
inline RootTableT::RootTableT(const RootTableT &o)
: far_vector(o.far_vector),
a(o.a),
far_string(o.far_string),
big_vector(o.big_vector),
near_string(o.near_string),
nested_root(o.nested_root),
far_struct_vector(o.far_struct_vector),
big_struct_vector(o.big_struct_vector) {
many_vectors.reserve(o.many_vectors.size());
for (const auto &many_vectors_ : o.many_vectors) { many_vectors.emplace_back((many_vectors_) ? new WrapperTableT(*many_vectors_) : nullptr); }
}
inline RootTableT &RootTableT::operator=(RootTableT o) FLATBUFFERS_NOEXCEPT {
std::swap(far_vector, o.far_vector);
std::swap(a, o.a);
std::swap(far_string, o.far_string);
std::swap(big_vector, o.big_vector);
std::swap(near_string, o.near_string);
std::swap(nested_root, o.nested_root);
std::swap(far_struct_vector, o.far_struct_vector);
std::swap(big_struct_vector, o.big_struct_vector);
std::swap(many_vectors, o.many_vectors);
return *this;
}
inline RootTableT *RootTable::UnPack(const ::flatbuffers::resolver_function_t *_resolver) const {
auto _o = std::unique_ptr<RootTableT>(new RootTableT());
UnPackTo(_o.get(), _resolver);
return _o.release();
}
inline void RootTable::UnPackTo(RootTableT *_o, const ::flatbuffers::resolver_function_t *_resolver) const {
(void)_o;
(void)_resolver;
{ auto _e = far_vector(); if (_e) { _o->far_vector.resize(_e->size()); std::copy(_e->begin(), _e->end(), _o->far_vector.begin()); } }
{ auto _e = a(); _o->a = _e; }
{ auto _e = far_string(); if (_e) _o->far_string = _e->str(); }
{ auto _e = big_vector(); if (_e) { _o->big_vector.resize(_e->size()); std::copy(_e->begin(), _e->end(), _o->big_vector.begin()); } }
{ auto _e = near_string(); if (_e) _o->near_string = _e->str(); }
{ auto _e = nested_root(); if (_e) { _o->nested_root.resize(_e->size()); std::copy(_e->begin(), _e->end(), _o->nested_root.begin()); } }
{ auto _e = far_struct_vector(); if (_e) { _o->far_struct_vector.resize(_e->size()); for (::flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->far_struct_vector[_i] = *_e->Get(_i); } } else { _o->far_struct_vector.resize(0); } }
{ auto _e = big_struct_vector(); if (_e) { _o->big_struct_vector.resize(_e->size()); for (::flatbuffers::uoffset64_t _i = 0; _i < _e->size(); _i++) { _o->big_struct_vector[_i] = *_e->Get(_i); } } else { _o->big_struct_vector.resize(0); } }
{ auto _e = many_vectors(); if (_e) { _o->many_vectors.resize(_e->size()); for (::flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { if(_o->many_vectors[_i]) { _e->Get(_i)->UnPackTo(_o->many_vectors[_i].get(), _resolver); } else { _o->many_vectors[_i] = std::unique_ptr<WrapperTableT>(_e->Get(_i)->UnPack(_resolver)); }; } } else { _o->many_vectors.resize(0); } }
}
inline ::flatbuffers::Offset<RootTable> RootTable::Pack(::flatbuffers::FlatBufferBuilder64 &_fbb, const RootTableT* _o, const ::flatbuffers::rehasher_function_t *_rehasher) {
return CreateRootTable(_fbb, _o, _rehasher);
}
inline ::flatbuffers::Offset<RootTable> CreateRootTable(::flatbuffers::FlatBufferBuilder64 &_fbb, const RootTableT *_o, const ::flatbuffers::rehasher_function_t *_rehasher) {
(void)_rehasher;
(void)_o;
struct _VectorArgs { ::flatbuffers::FlatBufferBuilder64 *__fbb; const RootTableT* __o; const ::flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
auto _far_vector = _o->far_vector.size() ? _fbb.CreateVector64<::flatbuffers::Vector>(_o->far_vector) : 0;
auto _a = _o->a;
auto _far_string = _o->far_string.empty() ? 0 : _fbb.CreateString<::flatbuffers::Offset64>(_o->far_string);
auto _big_vector = _o->big_vector.size() ? _fbb.CreateVector64(_o->big_vector) : 0;
auto _near_string = _o->near_string.empty() ? 0 : _fbb.CreateString(_o->near_string);
auto _nested_root = _o->nested_root.size() ? _fbb.CreateVector64(_o->nested_root) : 0;
auto _far_struct_vector = _o->far_struct_vector.size() ? _fbb.CreateVectorOfStructs64<::flatbuffers::Vector>(_o->far_struct_vector) : 0;
auto _big_struct_vector = _o->big_struct_vector.size() ? _fbb.CreateVectorOfStructs64(_o->big_struct_vector) : 0;
auto _many_vectors = _o->many_vectors.size() ? _fbb.CreateVector<::flatbuffers::Offset<WrapperTable>> (_o->many_vectors.size(), [](size_t i, _VectorArgs *__va) { return CreateWrapperTable(*__va->__fbb, __va->__o->many_vectors[i].get(), __va->__rehasher); }, &_va ) : 0;
return CreateRootTable(
_fbb,
_far_vector,
_a,
_far_string,
_big_vector,
_near_string,
_nested_root,
_far_struct_vector,
_big_struct_vector,
_many_vectors);
}
inline const ::flatbuffers::TypeTable *LeafStructTypeTable() {
static const ::flatbuffers::TypeCode type_codes[] = {
{ ::flatbuffers::ET_INT, 0, -1 },
{ ::flatbuffers::ET_DOUBLE, 0, -1 }
};
static const int64_t values[] = { 0, 8, 16 };
static const char * const names[] = {
"a",
"b"
};
static const ::flatbuffers::TypeTable tt = {
::flatbuffers::ST_STRUCT, 2, type_codes, nullptr, nullptr, values, names
};
return &tt;
}
inline const ::flatbuffers::TypeTable *WrapperTableTypeTable() {
static const ::flatbuffers::TypeCode type_codes[] = {
{ ::flatbuffers::ET_CHAR, 1, -1 }
};
static const char * const names[] = {
"vector"
};
static const ::flatbuffers::TypeTable tt = {
::flatbuffers::ST_TABLE, 1, type_codes, nullptr, nullptr, nullptr, names
};
return &tt;
}
inline const ::flatbuffers::TypeTable *RootTableTypeTable() {
static const ::flatbuffers::TypeCode type_codes[] = {
{ ::flatbuffers::ET_UCHAR, 1, -1 },
{ ::flatbuffers::ET_INT, 0, -1 },
{ ::flatbuffers::ET_STRING, 0, -1 },
{ ::flatbuffers::ET_UCHAR, 1, -1 },
{ ::flatbuffers::ET_STRING, 0, -1 },
{ ::flatbuffers::ET_UCHAR, 1, -1 },
{ ::flatbuffers::ET_SEQUENCE, 1, 0 },
{ ::flatbuffers::ET_SEQUENCE, 1, 0 },
{ ::flatbuffers::ET_SEQUENCE, 1, 1 }
};
static const ::flatbuffers::TypeFunction type_refs[] = {
LeafStructTypeTable,
WrapperTableTypeTable
};
static const char * const names[] = {
"far_vector",
"a",
"far_string",
"big_vector",
"near_string",
"nested_root",
"far_struct_vector",
"big_struct_vector",
"many_vectors"
};
static const ::flatbuffers::TypeTable tt = {
::flatbuffers::ST_TABLE, 9, type_codes, type_refs, nullptr, nullptr, names
};
return &tt;
}
inline const RootTable *GetRootTable(const void *buf) {
return ::flatbuffers::GetRoot<RootTable>(buf);
}
inline const RootTable *GetSizePrefixedRootTable(const void *buf) {
return ::flatbuffers::GetSizePrefixedRoot<RootTable,::flatbuffers::uoffset64_t>(buf);
}
inline RootTable *GetMutableRootTable(void *buf) {
return ::flatbuffers::GetMutableRoot<RootTable>(buf);
}
inline RootTable *GetMutableSizePrefixedRootTable(void *buf) {
return ::flatbuffers::GetMutableSizePrefixedRoot<RootTable,::flatbuffers::uoffset64_t>(buf);
}
inline bool VerifyRootTableBuffer(
::flatbuffers::Verifier &verifier) {
return verifier.VerifyBuffer<RootTable>(nullptr);
}
inline bool VerifySizePrefixedRootTableBuffer(
::flatbuffers::Verifier &verifier) {
return verifier.VerifySizePrefixedBuffer<RootTable,::flatbuffers::uoffset64_t>(nullptr);
}
inline void FinishRootTableBuffer(
::flatbuffers::FlatBufferBuilder64 &fbb,
::flatbuffers::Offset<RootTable> root) {
fbb.Finish(root);
}
inline void FinishSizePrefixedRootTableBuffer(
::flatbuffers::FlatBufferBuilder64 &fbb,
::flatbuffers::Offset<RootTable> root) {
fbb.FinishSizePrefixed(root);
}
inline std::unique_ptr<RootTableT> UnPackRootTable(
const void *buf,
const ::flatbuffers::resolver_function_t *res = nullptr) {
return std::unique_ptr<RootTableT>(GetRootTable(buf)->UnPack(res));
}
inline std::unique_ptr<RootTableT> UnPackSizePrefixedRootTable(
const void *buf,
const ::flatbuffers::resolver_function_t *res = nullptr) {
return std::unique_ptr<RootTableT>(GetSizePrefixedRootTable(buf)->UnPack(res));
}
#endif // FLATBUFFERS_GENERATED_TEST64BIT_H_

View File

@ -20,6 +20,12 @@ cc_test(
name = "flatbuffers_test",
testonly = 1,
srcs = [
"64bit/evolution/v1_generated.h",
"64bit/evolution/v2_generated.h",
"64bit/offset64_test.cpp",
"64bit/offset64_test.h",
"64bit/test_64bit_bfbs_generated.h",
"64bit/test_64bit_generated.h",
"alignment_test.cpp",
"alignment_test.h",
"alignment_test_generated.h",

View File

@ -910,7 +910,7 @@ class Monster extends Table
/**
* @param FlatBufferBuilder $builder
* @param int
* @param VectorOffset
* @return void
*/
public static function addPos(FlatBufferBuilder $builder, $pos)
@ -1111,7 +1111,7 @@ class Monster extends Table
/**
* @param FlatBufferBuilder $builder
* @param int
* @param VectorOffset
* @return void
*/
public static function addEnemy(FlatBufferBuilder $builder, $enemy)
@ -1155,7 +1155,7 @@ class Monster extends Table
/**
* @param FlatBufferBuilder $builder
* @param int
* @param VectorOffset
* @return void
*/
public static function addTestempty(FlatBufferBuilder $builder, $testempty)
@ -1523,7 +1523,7 @@ class Monster extends Table
/**
* @param FlatBufferBuilder $builder
* @param int
* @param VectorOffset
* @return void
*/
public static function addParentNamespaceTest(FlatBufferBuilder $builder, $parentNamespaceTest)
@ -1875,7 +1875,7 @@ class Monster extends Table
/**
* @param FlatBufferBuilder $builder
* @param int
* @param VectorOffset
* @return void
*/
public static function addNativeInline(FlatBufferBuilder $builder, $nativeInline)

View File

@ -80,7 +80,6 @@ void EvolutionTest(const std::string &tests_data_path) {
#endif
}
void ConformTest() {
const char ref[] = "table T { A:int; } enum E:byte { A }";
@ -111,9 +110,41 @@ void ConformTest() {
const char ref2[] = "enum E:byte { A } table T2 { f:E; } ";
test_conform(ref2, "enum E:int32 { A } table T2 { df:byte; f:E; }",
"field renamed to different type: T2.df (renamed from T2.f)");
// Check conformity for Offset64-related changes.
{
const char ref[] = "table T { a:[uint8]; b:string; }";
// Adding a 'vector64' changes the type.
test_conform(ref, "table T { a:[uint8] (vector64); b:string; }",
"types differ for field: T.a");
// Adding a 'offset64' to the vector changes the type.
test_conform(ref, "table T { a:[uint8] (offset64); b:string; }",
"offset types differ for field: T.a");
// Adding a 'offset64' to the string also changes the type.
test_conform(ref, "table T { a:[uint8]; b:string (offset64); }",
"offset types differ for field: T.b");
// Now try the opposite direction of removing an attribute from an existing
// field.
// Removing a 'vector64' changes the type.
test_conform("table T { a:[uint8] (vector64); b:string; }", ref,
"types differ for field: T.a");
// Removing a 'offset64' to the string also changes the type.
test_conform("table T { a:[uint8] (offset64); b:string; }", ref,
"offset types differ for field: T.a");
// Remove a 'offset64' to the string also changes the type.
test_conform("table T { a:[uint8]; b:string (offset64); }", ref,
"offset types differ for field: T.b");
}
}
void UnionDeprecationTest(const std::string& tests_data_path) {
void UnionDeprecationTest(const std::string &tests_data_path) {
const int NUM_VERSIONS = 2;
std::string schemas[NUM_VERSIONS];
std::string jsonfiles[NUM_VERSIONS];

View File

@ -15,4 +15,6 @@ fuzz-*.log
annotated_binary.bfbs
annotated_binary.bin
test_64bit.bin
monster_test.bfbs

View File

@ -117,6 +117,7 @@ set(FlatBuffers_Library_SRCS
${FLATBUFFERS_DIR}/src/binary_annotator.cpp
${FLATBUFFERS_DIR}/src/util.cpp
${FLATBUFFERS_DIR}/tests/test_assert.cpp
${FLATBUFFERS_DIR}/tests/64bit/test_64bit_bfbs_generated.h
)
include_directories(${FLATBUFFERS_DIR}/include)
@ -175,6 +176,16 @@ add_custom_command(
${CMAKE_CURRENT_BINARY_DIR}/seed_annotator/annotated_binary.bin
)
add_executable(64bit_fuzzer flatbuffers_64bit_fuzzer.cc)
target_link_libraries(64bit_fuzzer PRIVATE flatbuffers_fuzzed)
add_custom_command(
TARGET 64bit_fuzzer PRE_BUILD
COMMAND ${CMAKE_COMMAND} -E copy
${CMAKE_SOURCE_DIR}/../64bit/test_64bit.bin
${CMAKE_CURRENT_BINARY_DIR}/seed_64bit/test_64bit.bin
)
# Build debugger for weird cases found with fuzzer.
if(BUILD_DEBUGGER)
add_library(flatbuffers_nonfuzz STATIC ${FlatBuffers_Library_SRCS})

View File

@ -0,0 +1,121 @@
#include <cstdint>
#include <filesystem>
#include <type_traits>
#include "64bit/test_64bit_bfbs_generated.h"
#include "64bit/test_64bit_generated.h"
#include "flatbuffers/base.h"
#include "flatbuffers/flatbuffer_builder.h"
#include "flatbuffers/flatbuffers.h"
#include "flatbuffers/reflection.h"
#include "flatbuffers/verifier.h"
#include "test_assert.h"
#include "test_init.h"
OneTimeTestInit OneTimeTestInit::one_time_init_;
static RootTableBinarySchema schema;
static constexpr uint8_t flags_sized_prefixed = 0b00000001;
static const uint64_t kFnvPrime = 0x00000100000001b3ULL;
static const uint64_t kOffsetBasis = 0xcbf29ce484222645ULL;
namespace flatbuffers {
template<typename T, typename = std::enable_if_t<std::is_integral_v<T>>>
uint64_t Hash(T value, uint64_t hash) {
return (hash * kFnvPrime) ^ value;
}
uint64_t Hash(double value, uint64_t hash) {
static_assert(sizeof(double) == sizeof(uint64_t));
return (hash * kFnvPrime) ^ static_cast<uint64_t>(value);
}
uint64_t Hash(const flatbuffers::String *value, uint64_t hash) {
if (value == nullptr) { return hash * kFnvPrime; }
for (auto &c : value->str()) { hash = Hash(static_cast<uint8_t>(c), hash); }
return hash;
}
uint64_t Hash(const LeafStruct *value, uint64_t hash) {
if (value == nullptr) { return hash * kFnvPrime; }
hash = Hash(value->a(), hash);
hash = Hash(value->b(), hash);
return hash;
}
template<typename T> uint64_t Hash(const Vector<T> *value, uint64_t hash) {
if (value == nullptr) { return hash * kFnvPrime; }
for (const T c : *value) { hash = Hash(c, hash); }
return hash;
}
template<typename T> uint64_t Hash(const Vector64<T> *value, uint64_t hash) {
if (value == nullptr) { return hash * kFnvPrime; }
for (const T c : *value) { hash = Hash(c, hash); }
return hash;
}
uint64_t Hash(const RootTable *value, uint64_t hash) {
if (value == nullptr) { return hash * kFnvPrime; }
// Hash all the fields so we can exercise all parts of the code.
hash = Hash(value->far_vector(), hash);
hash = Hash(value->a(), hash);
hash = Hash(value->far_string(), hash);
hash = Hash(value->big_vector(), hash);
hash = Hash(value->near_string(), hash);
hash = Hash(value->nested_root(), hash);
hash = Hash(value->far_struct_vector(), hash);
hash = Hash(value->big_struct_vector(), hash);
return hash;
}
static int AccessBuffer(const uint8_t *data, size_t size,
bool is_size_prefixed) {
const RootTable *root_table =
is_size_prefixed ? GetSizePrefixedRootTable(data) : GetRootTable(data);
TEST_NOTNULL(root_table);
uint64_t hash = kOffsetBasis;
hash = Hash(root_table, hash);
hash = Hash(root_table->nested_root_nested_root(), hash);
return 0;
}
extern "C" int LLVMFuzzerInitialize(int *, char ***argv) {
Verifier verifier(schema.begin(), schema.size());
TEST_EQ(true, reflection::VerifySchemaBuffer(verifier));
return 0;
}
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
if (size < FLATBUFFERS_MIN_BUFFER_SIZE) { return 0; }
// Take the first bit of data as a flag to control things.
const uint8_t flags = data[0];
data++;
size--;
Verifier::Options options;
options.assert = true;
options.check_alignment = true;
options.check_nested_flatbuffers = true;
Verifier verifier(data, size, options);
const bool is_size_prefixed = flags & flags_sized_prefixed;
// Filter out data that isn't valid.
if ((is_size_prefixed && !VerifySizePrefixedRootTableBuffer(verifier)) ||
!VerifyRootTableBuffer(verifier)) {
return 0;
}
return AccessBuffer(data, size, is_size_prefixed);
}
} // namespace flatbuffers

View File

@ -46,7 +46,7 @@ extern "C" int LLVMFuzzerInitialize(int *, char ***argv) {
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
flatbuffers::BinaryAnnotator annotator(schema_bfbs_, schema_bfbs_length_,
data, size);
data, size, false);
annotator.Annotate();
return 0;

View File

@ -16,8 +16,9 @@ static const auto infinity_f = std::numeric_limits<float>::infinity();
static const auto infinity_d = std::numeric_limits<double>::infinity();
// Test that parser errors are actually generated.
static void TestError_(const char *src, const char *error_substr, bool strict_json,
const char *file, int line, const char *func) {
static void TestError_(const char *src, const char *error_substr,
bool strict_json, const char *file, int line,
const char *func) {
flatbuffers::IDLOptions opts;
opts.strict_json = strict_json;
flatbuffers::Parser parser(opts);
@ -32,8 +33,8 @@ static void TestError_(const char *src, const char *error_substr, bool strict_js
}
}
static void TestError_(const char *src, const char *error_substr, const char *file,
int line, const char *func) {
static void TestError_(const char *src, const char *error_substr,
const char *file, int line, const char *func) {
TestError_(src, error_substr, false, file, line, func);
}
@ -47,7 +48,7 @@ static void TestError_(const char *src, const char *error_substr, const char *fi
static bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; }
} // namespace
} // namespace
// Test that parsing errors occur as we'd expect.
// Also useful for coverage, making sure these paths are run.
@ -124,6 +125,34 @@ void ErrorTest() {
// An identifier can't start from sign (+|-)
TestError("table X { -Y: int; } root_type Y: {Y:1.0}", "identifier");
TestError("table X { +Y: int; } root_type Y: {Y:1.0}", "identifier");
// Offset64
TestError("table X { a:int (vector64); }", "`vector64` attribute");
TestError("table X { a:int (offset64); }", "`offset64` attribute");
TestError("table X { a:string (vector64); }", "`vector64` attribute");
TestError("table y { a:int; } table X { a:y (offset64); }",
"`offset64` attribute");
TestError("struct y { a:int; } table X { a:y (offset64); }",
"`offset64` attribute");
TestError("table y { a:int; } table X { a:y (vector64); }",
"`vector64` attribute");
TestError("union Y { } table X { ys:Y (offset64); }", "`offset64` attribute");
TestError("table Y { a:int; } table X { ys:[Y] (offset64); }",
"only vectors of scalars are allowed to be 64-bit.");
TestError("table Y { a:int; } table X { ys:[Y] (vector64); }",
"only vectors of scalars are allowed to be 64-bit.");
TestError("union Y { } table X { ys:[Y] (vector64); }",
"only vectors of scalars are allowed to be 64-bit.");
// TOOD(derekbailey): the following three could be allowed once the code gen
// supports the output.
TestError("table X { y:[string] (offset64); }",
"only vectors of scalars are allowed to be 64-bit.");
TestError("table X { y:[string] (vector64); }",
"only vectors of scalars are allowed to be 64-bit.");
TestError("enum X:byte {Z} table X { y:[X] (offset64); }",
"only vectors of scalars are allowed to be 64-bit.");
}
void EnumOutOfRangeTest() {
@ -776,8 +805,6 @@ void UnicodeSurrogatesTest() {
TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9");
}
void UnknownFieldsTest() {
flatbuffers::IDLOptions opts;
opts.skip_unexpected_fields_in_json = true;

View File

@ -42,7 +42,7 @@
#if !defined(_MSC_VER) || _MSC_VER >= 1700
# include "arrays_test_generated.h"
#endif
#include "64bit/offset64_test.h"
#include "flexbuffers_test.h"
#include "is_quiet_nan.h"
#include "monster_test_bfbs_generated.h" // Generated using --bfbs-comments --bfbs-builtins --cpp --bfbs-gen-embed
@ -74,7 +74,7 @@ static_assert(flatbuffers::is_same<uint8_t, char>::value ||
using namespace MyGame::Example;
void TriviallyCopyableTest() {
// clang-format off
// clang-format off
#if __GNUG__ && __GNUC__ < 5 && \
!(defined(__clang__) && __clang_major__ >= 16)
TEST_EQ(__has_trivial_copy(Vec3), true);
@ -1540,6 +1540,17 @@ void DoNotRequireEofTest(const std::string &tests_data_path) {
}
#endif
static void Offset64Tests() {
Offset64Test();
Offset64SerializedFirst();
Offset64NestedFlatBuffer();
Offset64CreateDirect();
Offset64Evolution();
Offset64VectorOfStructs();
Offset64SizePrefix();
Offset64ManyVectors();
}
int FlatBufferTests(const std::string &tests_data_path) {
// Run our various test suites:
@ -1651,6 +1662,7 @@ int FlatBufferTests(const std::string &tests_data_path) {
NestedStructKeyInStructTest();
FixedSizedStructArrayKeyInStructTest();
EmbeddedSchemaAccess();
Offset64Tests();
return 0;
}
} // namespace

View File

@ -1,20 +1,22 @@
#include "test_builder.h"
#include "flatbuffers/flatbuffer_builder.h"
#include "flatbuffers/stl_emulation.h"
#include "monster_test_generated.h"
using namespace MyGame::Example;
using namespace flatbuffers;
struct OwnedAllocator : public flatbuffers::DefaultAllocator {};
struct OwnedAllocator : public DefaultAllocator {};
class TestHeapBuilder : public flatbuffers::FlatBufferBuilder {
class TestHeapBuilder : public FlatBufferBuilder {
private:
TestHeapBuilder(const TestHeapBuilder &);
TestHeapBuilder &operator=(const TestHeapBuilder &);
public:
TestHeapBuilder()
: flatbuffers::FlatBufferBuilder(2048, new OwnedAllocator(), true) {}
: FlatBufferBuilder(2048, new OwnedAllocator(), true) {}
TestHeapBuilder(TestHeapBuilder &&other)
: FlatBufferBuilder(std::move(other)) {}
@ -31,14 +33,14 @@ struct AllocatorMember {
};
struct GrpcLikeMessageBuilder : private AllocatorMember,
public flatbuffers::FlatBufferBuilder {
public FlatBufferBuilder {
private:
GrpcLikeMessageBuilder(const GrpcLikeMessageBuilder &);
GrpcLikeMessageBuilder &operator=(const GrpcLikeMessageBuilder &);
public:
GrpcLikeMessageBuilder()
: flatbuffers::FlatBufferBuilder(1024, &member_allocator_, false) {}
: FlatBufferBuilder(1024, &member_allocator_, false) {}
GrpcLikeMessageBuilder(GrpcLikeMessageBuilder &&other)
: FlatBufferBuilder(1024, &member_allocator_, false) {

View File

@ -17,10 +17,6 @@ class MessageBuilder;
}
} // namespace flatbuffers
template<class T, class U> struct is_same { static const bool value = false; };
template<class T> struct is_same<T, T> { static const bool value = true; };
inline std::string m1_name() { return "Cyberdemon"; }
inline std::string m2_name() { return "Imp"; }
inline MyGame::Example::Color m1_color() {
@ -166,7 +162,7 @@ struct BuilderTests {
}
static void builder_swap_before_finish_test(
bool run = is_same<DestBuilder, SrcBuilder>::value) {
bool run = std::is_same<DestBuilder, SrcBuilder>::value) {
/// Swap is allowed only when lhs and rhs are the same concrete type.
if (run) {
SrcBuilder src;
@ -186,7 +182,7 @@ struct BuilderTests {
}
static void builder_swap_after_finish_test(
bool run = is_same<DestBuilder, SrcBuilder>::value) {
bool run = std::is_same<DestBuilder, SrcBuilder>::value) {
/// Swap is allowed only when lhs and rhs are the same concrete type.
if (run) {
SrcBuilder src;